You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/cloud/upload_data.py

148 lines
4.9 KiB

"""
This tool is used for preparing data for DeepSpeech2 trainning on paddle cloud.
Steps:
1. Read original manifest and get the local path of sound files.
2. Tar all local sound files into one tar file.
3. Modify original manifest to remove the local path information.
Finally, we will get a tar file and a manifest with sound file name, duration
and text.
"""
import json
import os
import tarfile
import sys
import argparse
import shutil
sys.path.append('../')
from data_utils.utils import read_manifest
from subprocess import call
TRAIN_TAR = "cloud.train.tar"
TRAIN_MANIFEST = "cloud.train.manifest"
TEST_TAR = "cloud.test.tar"
TEST_MANIFEST = "cloud.test.manifest"
VOCAB_FILE = "vocab.txt"
MEAN_STD_FILE = "mean_std.npz"
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--train_manifest_path",
default="../datasets/manifest.train",
type=str,
help="Manifest file of train data. (default: %(default)s)")
parser.add_argument(
"--test_manifest_path",
default="../datasets/manifest.test",
type=str,
help="Manifest file of test data. (default: %(default)s)")
parser.add_argument(
"--vocab_file",
default="../datasets/vocab/eng_vocab.txt",
type=str,
help="Vocab file to be uploaded to paddlecloud. (default: %(default)s)")
parser.add_argument(
"--mean_std_file",
default="../mean_std.npz",
type=str,
help="mean_std file to be uploaded to paddlecloud. (default: %(default)s)")
parser.add_argument(
"--cloud_data_path",
required=True,
default="",
type=str,
help="Destination path on paddlecloud. (default: %(default)s)")
args = parser.parse_args()
parser.add_argument(
"--local_tmp_path",
default="./tmp/",
type=str,
help="Local directory for storing temporary data. (default: %(default)s)")
args = parser.parse_args()
def pack_data(manifest_path, out_tar_path, out_manifest_path):
'''
1. According manifest, tar sound files into out_tar_path
2. Generate a new manifest for output tar file
'''
out_tar = tarfile.open(out_tar_path, 'w')
manifest = read_manifest(manifest_path)
results = []
for json_data in manifest:
sound_file = json_data['audio_filepath']
filename = os.path.basename(sound_file)
out_tar.add(sound_file, arcname=filename)
json_data['audio_filepath'] = filename
results.append("%s\n" % json.dumps(json_data))
with open(out_manifest_path, 'w') as out_manifest:
out_manifest.writelines(results)
out_manifest.close()
out_tar.close()
if __name__ == '__main__':
cloud_train_manifest = "%s/%s" % (args.cloud_data_path, TRAIN_MANIFEST)
cloud_train_tar = "%s/%s" % (args.cloud_data_path, TRAIN_TAR)
cloud_test_manifest = "%s/%s" % (args.cloud_data_path, TEST_MANIFEST)
cloud_test_tar = "%s/%s" % (args.cloud_data_path, TEST_TAR)
cloud_vocab_file = "%s/%s" % (args.cloud_data_path, VOCAB_FILE)
cloud_mean_file = "%s/%s" % (args.cloud_data_path, MEAN_STD_FILE)
local_train_manifest = "%s/%s" % (args.local_tmp_path, TRAIN_MANIFEST)
local_train_tar = "%s/%s" % (args.local_tmp_path, TRAIN_TAR)
local_test_manifest = "%s/%s" % (args.local_tmp_path, TEST_MANIFEST)
local_test_tar = "%s/%s" % (args.local_tmp_path, TEST_TAR)
if os.path.exists(args.local_tmp_path):
shutil.rmtree(args.local_tmp_path)
os.makedirs(args.local_tmp_path)
ret = 1
# train data
if args.train_manifest_path != "":
ret = call(['paddlecloud', 'ls', cloud_train_manifest])
if ret != 0:
print "%s does't exist" % cloud_train_manifest
pack_data(args.train_manifest_path, local_train_tar,
local_train_manifest)
call([
'paddlecloud', 'cp', local_train_manifest, cloud_train_manifest
])
call(['paddlecloud', 'cp', local_train_tar, cloud_train_tar])
# test data
if args.test_manifest_path != "":
try:
ret = call(['paddlecloud', 'ls', cloud_test_manifest])
except Exception:
ret = 1
if ret != 0:
pack_data(args.test_manifest_path, local_test_tar,
local_test_manifest)
call(
['paddlecloud', 'cp', local_test_manifest, cloud_test_manifest])
call(['paddlecloud', 'cp', local_test_tar, cloud_test_tar])
# vocab file
if args.vocab_file != "":
try:
ret = call(['paddlecloud', 'ls', cloud_vocab_file])
except Exception:
ret = 1
if ret != 0:
call(['paddlecloud', 'cp', args.vocab_file, cloud_vocab_file])
# mean_std file
if args.mean_std_file != "":
try:
ret = call(['paddlecloud', 'ls', cloud_mean_file])
except Exception:
ret = 1
if ret != 0:
call(['paddlecloud', 'cp', args.mean_std_file, cloud_mean_file])
os.removedirs(args.local_tmp_path)