You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/utils/DER.py

195 lines
6.0 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Calculates Diarization Error Rate (DER) which is the sum of Missed Speaker (MS),
False Alarm (FA), and Speaker Error Rate (SER) using md-eval-22.pl from NIST RT Evaluation.
Authors
* Neville Ryant 2018
* Nauman Dawalatabad 2020
* qingenz123@126.com (Qingen ZHAO) 2022
Credits
This code is adapted from https://github.com/nryant/dscore
"""
import argparse
import os
import re
import subprocess
import numpy as np
from paddlespeech.utils.argparse import strtobool
FILE_IDS = re.compile(r"(?<=Speaker Diarization for).+(?=\*\*\*)")
SCORED_SPEAKER_TIME = re.compile(r"(?<=SCORED SPEAKER TIME =)[\d.]+")
MISS_SPEAKER_TIME = re.compile(r"(?<=MISSED SPEAKER TIME =)[\d.]+")
FA_SPEAKER_TIME = re.compile(r"(?<=FALARM SPEAKER TIME =)[\d.]+")
ERROR_SPEAKER_TIME = re.compile(r"(?<=SPEAKER ERROR TIME =)[\d.]+")
def rectify(arr):
"""Corrects corner cases and converts scores into percentage.
"""
# Numerator and denominator both 0.
arr[np.isnan(arr)] = 0
# Numerator > 0, but denominator = 0.
arr[np.isinf(arr)] = 1
arr *= 100.0
return arr
def DER(
ref_rttm,
sys_rttm,
ignore_overlap=False,
collar=0.25,
individual_file_scores=False, ):
"""Computes Missed Speaker percentage (MS), False Alarm (FA),
Speaker Error Rate (SER), and Diarization Error Rate (DER).
Arguments
---------
ref_rttm : str
The path of reference/groundtruth RTTM file.
sys_rttm : str
The path of the system generated RTTM file.
individual_file : bool
If True, returns scores for each file in order.
collar : float
Forgiveness collar.
ignore_overlap : bool
If True, ignores overlapping speech during evaluation.
Returns
-------
MS : float array
Missed Speech.
FA : float array
False Alarms.
SER : float array
Speaker Error Rates.
DER : float array
Diarization Error Rates.
Example
-------
>>> import pytest
>>> pytest.skip('Skipping because of Perl dependency')
>>> ref_rttm = "../../samples/rttm_samples/ref_rttm/ES2014c.rttm"
>>> sys_rttm = "../../samples/rttm_samples/sys_rttm/ES2014c.rttm"
>>> ignore_overlap = True
>>> collar = 0.25
>>> individual_file_scores = True
>>> Scores = DER(ref_rttm, sys_rttm, ignore_overlap, collar, individual_file_scores)
>>> print (Scores)
(array([0., 0.]), array([0., 0.]), array([7.16923618, 7.16923618]), array([7.16923618, 7.16923618]))
"""
curr = os.path.abspath(os.path.dirname(__file__))
mdEval = os.path.join(curr, "./md-eval.pl")
cmd = [
mdEval,
"-af",
"-r",
ref_rttm,
"-s",
sys_rttm,
"-c",
str(collar),
]
if ignore_overlap:
cmd.append("-1")
try:
stdout = subprocess.check_output(cmd, stderr=subprocess.STDOUT)
except subprocess.CalledProcessError as ex:
stdout = ex.output
else:
stdout = stdout.decode("utf-8")
# Get all recording IDs
file_ids = [m.strip() for m in FILE_IDS.findall(stdout)]
file_ids = [
file_id[2:] if file_id.startswith("f=") else file_id
for file_id in file_ids
]
scored_speaker_times = np.array(
[float(m) for m in SCORED_SPEAKER_TIME.findall(stdout)])
miss_speaker_times = np.array(
[float(m) for m in MISS_SPEAKER_TIME.findall(stdout)])
fa_speaker_times = np.array(
[float(m) for m in FA_SPEAKER_TIME.findall(stdout)])
error_speaker_times = np.array(
[float(m) for m in ERROR_SPEAKER_TIME.findall(stdout)])
with np.errstate(invalid="ignore", divide="ignore"):
tot_error_times = (
miss_speaker_times + fa_speaker_times + error_speaker_times)
miss_speaker_frac = miss_speaker_times / scored_speaker_times
fa_speaker_frac = fa_speaker_times / scored_speaker_times
sers_frac = error_speaker_times / scored_speaker_times
ders_frac = tot_error_times / scored_speaker_times
# Values in percentage of scored_speaker_time
miss_speaker = rectify(miss_speaker_frac)
fa_speaker = rectify(fa_speaker_frac)
sers = rectify(sers_frac)
ders = rectify(ders_frac)
if individual_file_scores:
return miss_speaker, fa_speaker, sers, ders
else:
return miss_speaker[-1], fa_speaker[-1], sers[-1], ders[-1]
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Compute Diarization Error Rate')
parser.add_argument(
'--ref_rttm',
required=True,
help='the path of reference/groundtruth RTTM file')
parser.add_argument(
'--sys_rttm',
required=True,
help='the path of the system generated RTTM file')
parser.add_argument(
'--individual_file',
default=False,
type=strtobool,
help='if True, returns scores for each file in order')
parser.add_argument(
'--collar', default=0.25, type=float, help='forgiveness collar')
parser.add_argument(
'--ignore_overlap',
default=False,
type=strtobool,
help='if True, ignores overlapping speech during evaluation')
args = parser.parse_args()
print(args)
der = DER(args.ref_rttm, args.sys_rttm)
print("miss_speaker: %.3f%% fa_speaker: %.3f%% sers: %.3f%% ders: %.3f%%" %
(der[0], der[1], der[2], der[-1]))