You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/examples/other/text_frontend/test_g2p.py

99 lines
3.5 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import re
from pathlib import Path
from paddlespeech.t2s.frontend.zh_frontend import Frontend as zhFrontend
from paddlespeech.t2s.utils.error_rate import word_errors
SILENCE_TOKENS = {"sp", "sil", "sp1", "spl"}
def text_cleaner(raw_text):
text = re.sub('#[1-4]|“|”||', '', raw_text)
text = text.replace("…。", "")
text = re.sub('||——|……|、|…|—', '', text)
return text
def get_avg_wer(raw_dict, ref_dict, frontend, output_dir):
edit_distances = []
ref_lens = []
wf_g2p = open(output_dir / "text.g2p", "w")
wf_ref = open(output_dir / "text.ref.clean", "w")
for utt_id in raw_dict:
if utt_id not in ref_dict:
continue
raw_text = raw_dict[utt_id]
text = text_cleaner(raw_text)
g2p_phones = frontend.get_phonemes(text)
g2p_phones = sum(g2p_phones, [])
gt_phones = ref_dict[utt_id].split(" ")
# delete silence tokens in predicted phones and ground truth phones
g2p_phones = [phn for phn in g2p_phones if phn not in SILENCE_TOKENS]
gt_phones = [phn for phn in gt_phones if phn not in SILENCE_TOKENS]
gt_phones = " ".join(gt_phones)
g2p_phones = " ".join(g2p_phones)
wf_ref.write(gt_phones + "(baker_" + utt_id + ")" + "\n")
wf_g2p.write(g2p_phones + "(baker_" + utt_id + ")" + "\n")
edit_distance, ref_len = word_errors(gt_phones, g2p_phones)
edit_distances.append(edit_distance)
ref_lens.append(ref_len)
return sum(edit_distances) / sum(ref_lens)
def main():
parser = argparse.ArgumentParser(description="g2p example.")
parser.add_argument(
"--input-dir",
default="data/g2p",
type=str,
help="directory to preprocessed test data.")
parser.add_argument(
"--output-dir",
default="exp/g2p",
type=str,
help="directory to save g2p results.")
args = parser.parse_args()
input_dir = Path(args.input_dir).expanduser()
output_dir = Path(args.output_dir).expanduser()
output_dir.mkdir(parents=True, exist_ok=True)
assert input_dir.is_dir()
raw_dict, ref_dict = dict(), dict()
raw_path = input_dir / "text"
ref_path = input_dir / "text.ref"
with open(raw_path, "r") as rf:
for line in rf:
line = line.strip()
line_list = line.split(" ")
utt_id, raw_text = line_list[0], " ".join(line_list[1:])
raw_dict[utt_id] = raw_text
with open(ref_path, "r") as rf:
for line in rf:
line = line.strip()
line_list = line.split(" ")
utt_id, phones = line_list[0], " ".join(line_list[1:])
ref_dict[utt_id] = phones
frontend = zhFrontend()
avg_wer = get_avg_wer(raw_dict, ref_dict, frontend, output_dir)
print("The avg WER of g2p is:", avg_wer)
if __name__ == "__main__":
main()