You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
652 lines
24 KiB
652 lines
24 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import logging
|
|
import time
|
|
from collections import defaultdict
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import pandas as pd
|
|
from paddle import distributed as dist
|
|
from paddle.io import DataLoader
|
|
from sklearn.metrics import classification_report
|
|
from sklearn.metrics import f1_score
|
|
from sklearn.metrics import precision_recall_fscore_support
|
|
from speechtask.punctuation_restoration.io.dataset import PuncDataset
|
|
from speechtask.punctuation_restoration.io.dataset import PuncDatasetFromBertTokenizer
|
|
from speechtask.punctuation_restoration.model.BertBLSTM import BertBLSTMPunc
|
|
from speechtask.punctuation_restoration.model.BertLinear import BertLinearPunc
|
|
from speechtask.punctuation_restoration.model.blstm import BiLSTM
|
|
from speechtask.punctuation_restoration.model.lstm import RnnLm
|
|
from speechtask.punctuation_restoration.utils import layer_tools
|
|
from speechtask.punctuation_restoration.utils import mp_tools
|
|
from speechtask.punctuation_restoration.utils.checkpoint import Checkpoint
|
|
from tensorboardX import SummaryWriter
|
|
|
|
__all__ = ["Trainer", "Tester"]
|
|
|
|
DefinedClassifier = {
|
|
"lstm": RnnLm,
|
|
"blstm": BiLSTM,
|
|
"BertLinear": BertLinearPunc,
|
|
"BertBLSTM": BertBLSTMPunc
|
|
}
|
|
|
|
DefinedLoss = {
|
|
"ce": nn.CrossEntropyLoss,
|
|
}
|
|
|
|
DefinedDataset = {
|
|
'PuncCh': PuncDataset,
|
|
'Bert': PuncDatasetFromBertTokenizer,
|
|
}
|
|
|
|
|
|
class Trainer():
|
|
"""
|
|
An experiment template in order to structure the training code and take
|
|
care of saving, loading, logging, visualization stuffs. It"s intended to
|
|
be flexible and simple.
|
|
|
|
So it only handles output directory (create directory for the output,
|
|
create a checkpoint directory, dump the config in use and create
|
|
visualizer and logger) in a standard way without enforcing any
|
|
input-output protocols to the model and dataloader. It leaves the main
|
|
part for the user to implement their own (setup the model, criterion,
|
|
optimizer, define a training step, define a validation function and
|
|
customize all the text and visual logs).
|
|
It does not save too much boilerplate code. The users still have to write
|
|
the forward/backward/update mannually, but they are free to add
|
|
non-standard behaviors if needed.
|
|
We have some conventions to follow.
|
|
1. Experiment should have ``model``, ``optimizer``, ``train_loader`` and
|
|
``valid_loader``, ``config`` and ``args`` attributes.
|
|
2. The config should have a ``training`` field, which has
|
|
``valid_interval``, ``save_interval`` and ``max_iteration`` keys. It is
|
|
used as the trigger to invoke validation, checkpointing and stop of the
|
|
experiment.
|
|
3. There are four methods, namely ``train_batch``, ``valid``,
|
|
``setup_model`` and ``setup_dataloader`` that should be implemented.
|
|
Feel free to add/overwrite other methods and standalone functions if you
|
|
need.
|
|
|
|
Parameters
|
|
----------
|
|
config: yacs.config.CfgNode
|
|
The configuration used for the experiment.
|
|
|
|
args: argparse.Namespace
|
|
The parsed command line arguments.
|
|
Examples
|
|
--------
|
|
>>> def main_sp(config, args):
|
|
>>> exp = Trainer(config, args)
|
|
>>> exp.setup()
|
|
>>> exp.run()
|
|
>>>
|
|
>>> config = get_cfg_defaults()
|
|
>>> parser = default_argument_parser()
|
|
>>> args = parser.parse_args()
|
|
>>> if args.config:
|
|
>>> config.merge_from_file(args.config)
|
|
>>> if args.opts:
|
|
>>> config.merge_from_list(args.opts)
|
|
>>> config.freeze()
|
|
>>>
|
|
>>> if args.nprocs > 1 and args.device == "gpu":
|
|
>>> dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
|
|
>>> else:
|
|
>>> main_sp(config, args)
|
|
"""
|
|
|
|
def __init__(self, config, args):
|
|
self.config = config
|
|
self.args = args
|
|
self.optimizer = None
|
|
self.visualizer = None
|
|
self.output_dir = None
|
|
self.checkpoint_dir = None
|
|
self.iteration = 0
|
|
self.epoch = 0
|
|
|
|
def setup(self):
|
|
"""Setup the experiment.
|
|
"""
|
|
self.setup_logger()
|
|
paddle.set_device(self.args.device)
|
|
if self.parallel:
|
|
self.init_parallel()
|
|
|
|
self.setup_output_dir()
|
|
self.dump_config()
|
|
self.setup_visualizer()
|
|
self.setup_checkpointer()
|
|
|
|
self.setup_model()
|
|
|
|
self.setup_dataloader()
|
|
|
|
self.iteration = 0
|
|
self.epoch = 0
|
|
|
|
@property
|
|
def parallel(self):
|
|
"""A flag indicating whether the experiment should run with
|
|
multiprocessing.
|
|
"""
|
|
return self.args.device == "gpu" and self.args.nprocs > 1
|
|
|
|
def init_parallel(self):
|
|
"""Init environment for multiprocess training.
|
|
"""
|
|
dist.init_parallel_env()
|
|
|
|
@mp_tools.rank_zero_only
|
|
def save(self, tag=None, infos: dict=None):
|
|
"""Save checkpoint (model parameters and optimizer states).
|
|
|
|
Args:
|
|
tag (int or str, optional): None for step, else using tag, e.g epoch. Defaults to None.
|
|
infos (dict, optional): meta data to save. Defaults to None.
|
|
"""
|
|
|
|
infos = infos if infos else dict()
|
|
infos.update({
|
|
"step": self.iteration,
|
|
"epoch": self.epoch,
|
|
"lr": self.optimizer.get_lr()
|
|
})
|
|
self.checkpointer.add_checkpoint(self.checkpoint_dir, self.iteration
|
|
if tag is None else tag, self.model,
|
|
self.optimizer, infos)
|
|
|
|
def resume_or_scratch(self):
|
|
"""Resume from latest checkpoint at checkpoints in the output
|
|
directory or load a specified checkpoint.
|
|
|
|
If ``args.checkpoint_path`` is not None, load the checkpoint, else
|
|
resume training.
|
|
"""
|
|
scratch = None
|
|
infos = self.checkpointer.load_parameters(
|
|
self.model,
|
|
self.optimizer,
|
|
checkpoint_dir=self.checkpoint_dir,
|
|
checkpoint_path=self.args.checkpoint_path)
|
|
if infos:
|
|
# restore from ckpt
|
|
self.iteration = infos["step"]
|
|
self.epoch = infos["epoch"]
|
|
scratch = False
|
|
else:
|
|
self.iteration = 0
|
|
self.epoch = 0
|
|
scratch = True
|
|
|
|
return scratch
|
|
|
|
def new_epoch(self):
|
|
"""Reset the train loader seed and increment `epoch`.
|
|
"""
|
|
self.epoch += 1
|
|
if self.parallel:
|
|
self.train_loader.batch_sampler.set_epoch(self.epoch)
|
|
|
|
def train(self):
|
|
"""The training process control by epoch."""
|
|
from_scratch = self.resume_or_scratch()
|
|
|
|
if from_scratch:
|
|
# save init model, i.e. 0 epoch
|
|
self.save(tag="init")
|
|
|
|
self.lr_scheduler.step(self.iteration)
|
|
if self.parallel:
|
|
self.train_loader.batch_sampler.set_epoch(self.epoch)
|
|
|
|
self.logger.info(
|
|
f"Train Total Examples: {len(self.train_loader.dataset)}")
|
|
self.punc_list = []
|
|
for i in range(len(self.train_loader.dataset.id2punc)):
|
|
self.punc_list.append(self.train_loader.dataset.id2punc[i])
|
|
while self.epoch < self.config["training"]["n_epoch"]:
|
|
self.model.train()
|
|
self.total_label_train = []
|
|
self.total_predict_train = []
|
|
try:
|
|
data_start_time = time.time()
|
|
for batch_index, batch in enumerate(self.train_loader):
|
|
dataload_time = time.time() - data_start_time
|
|
msg = "Train: Rank: {}, ".format(dist.get_rank())
|
|
msg += "epoch: {}, ".format(self.epoch)
|
|
msg += "step: {}, ".format(self.iteration)
|
|
msg += "batch : {}/{}, ".format(batch_index + 1,
|
|
len(self.train_loader))
|
|
msg += "lr: {:>.8f}, ".format(self.lr_scheduler())
|
|
msg += "data time: {:>.3f}s, ".format(dataload_time)
|
|
self.train_batch(batch_index, batch, msg)
|
|
data_start_time = time.time()
|
|
t = classification_report(
|
|
self.total_label_train,
|
|
self.total_predict_train,
|
|
target_names=self.punc_list)
|
|
self.logger.info(t)
|
|
except Exception as e:
|
|
self.logger.error(e)
|
|
raise e
|
|
|
|
total_loss, F1_score = self.valid()
|
|
self.logger.info("Epoch {} Val info val_loss {}, F1_score {}".
|
|
format(self.epoch, total_loss, F1_score))
|
|
if self.visualizer:
|
|
self.visualizer.add_scalars("epoch", {
|
|
"total_loss": total_loss,
|
|
"lr": self.lr_scheduler()
|
|
}, self.epoch)
|
|
|
|
self.save(
|
|
tag=self.epoch, infos={"val_loss": total_loss,
|
|
"F1": F1_score})
|
|
# step lr every epoch
|
|
self.lr_scheduler.step()
|
|
self.new_epoch()
|
|
|
|
def run(self):
|
|
"""The routine of the experiment after setup. This method is intended
|
|
to be used by the user.
|
|
"""
|
|
try:
|
|
self.train()
|
|
except KeyboardInterrupt:
|
|
self.save()
|
|
exit(-1)
|
|
finally:
|
|
self.destory()
|
|
self.logger.info("Training Done.")
|
|
|
|
def setup_output_dir(self):
|
|
"""Create a directory used for output.
|
|
"""
|
|
# output dir
|
|
output_dir = Path(self.args.output).expanduser()
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
self.output_dir = output_dir
|
|
|
|
def setup_checkpointer(self):
|
|
"""Create a directory used to save checkpoints into.
|
|
|
|
It is "checkpoints" inside the output directory.
|
|
"""
|
|
# checkpoint dir
|
|
self.checkpointer = Checkpoint(self.logger,
|
|
self.config["checkpoint"]["kbest_n"],
|
|
self.config["checkpoint"]["latest_n"])
|
|
|
|
checkpoint_dir = self.output_dir / "checkpoints"
|
|
checkpoint_dir.mkdir(exist_ok=True)
|
|
|
|
self.checkpoint_dir = checkpoint_dir
|
|
|
|
def setup_logger(self):
|
|
LOG_FORMAT = "%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s"
|
|
format_str = logging.Formatter(
|
|
'%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s'
|
|
)
|
|
logging.basicConfig(
|
|
filename=self.config["training"]["log_path"],
|
|
level=logging.INFO,
|
|
format=LOG_FORMAT)
|
|
self.logger = logging.getLogger(__name__)
|
|
# self.logger = logging.getLogger(self.config["training"]["log_path"].strip().split('/')[-1].split('.')[0])
|
|
|
|
self.logger.setLevel(logging.INFO) #设置日志级别
|
|
sh = logging.StreamHandler() #往屏幕上输出
|
|
sh.setFormatter(format_str) #设置屏幕上显示的格式
|
|
self.logger.addHandler(sh) #把对象加到logger里
|
|
|
|
self.logger.info('info')
|
|
print("setup logger!!!")
|
|
|
|
@mp_tools.rank_zero_only
|
|
def destory(self):
|
|
"""Close visualizer to avoid hanging after training"""
|
|
# https://github.com/pytorch/fairseq/issues/2357
|
|
if self.visualizer:
|
|
self.visualizer.close()
|
|
|
|
@mp_tools.rank_zero_only
|
|
def setup_visualizer(self):
|
|
"""Initialize a visualizer to log the experiment.
|
|
|
|
The visual log is saved in the output directory.
|
|
|
|
Notes
|
|
------
|
|
Only the main process has a visualizer with it. Use multiple
|
|
visualizers in multiprocess to write to a same log file may cause
|
|
unexpected behaviors.
|
|
"""
|
|
# visualizer
|
|
visualizer = SummaryWriter(logdir=str(self.output_dir))
|
|
self.visualizer = visualizer
|
|
|
|
@mp_tools.rank_zero_only
|
|
def dump_config(self):
|
|
"""Save the configuration used for this experiment.
|
|
|
|
It is saved in to ``config.yaml`` in the output directory at the
|
|
beginning of the experiment.
|
|
"""
|
|
with open(self.output_dir / "config.yaml", "wt") as f:
|
|
print(self.config, file=f)
|
|
|
|
def train_batch(self, batch_index, batch_data, msg):
|
|
start = time.time()
|
|
|
|
input, label = batch_data
|
|
label = paddle.reshape(label, shape=[-1])
|
|
y, logit = self.model(input)
|
|
pred = paddle.argmax(logit, axis=1)
|
|
self.total_label_train.extend(label.numpy().tolist())
|
|
self.total_predict_train.extend(pred.numpy().tolist())
|
|
# self.total_predict.append(logit.numpy().tolist())
|
|
# print('--after model----')
|
|
# # print(label.shape)
|
|
# # print(pred.shape)
|
|
# # print('--!!!!!!!!!!!!!----')
|
|
# print("self.total_label")
|
|
# print(self.total_label)
|
|
# print("self.total_predict")
|
|
# print(self.total_predict)
|
|
loss = self.crit(y, label)
|
|
|
|
loss.backward()
|
|
layer_tools.print_grads(self.model, print_func=None)
|
|
self.optimizer.step()
|
|
self.optimizer.clear_grad()
|
|
iteration_time = time.time() - start
|
|
|
|
losses_np = {
|
|
"train_loss": float(loss),
|
|
}
|
|
msg += "train time: {:>.3f}s, ".format(iteration_time)
|
|
msg += "batch size: {}, ".format(self.config["data"]["batch_size"])
|
|
msg += ", ".join("{}: {:>.6f}".format(k, v)
|
|
for k, v in losses_np.items())
|
|
self.logger.info(msg)
|
|
# print(msg)
|
|
|
|
if dist.get_rank() == 0 and self.visualizer:
|
|
for k, v in losses_np.items():
|
|
self.visualizer.add_scalar("train/{}".format(k), v,
|
|
self.iteration)
|
|
self.iteration += 1
|
|
|
|
@paddle.no_grad()
|
|
def valid(self):
|
|
self.logger.info(
|
|
f"Valid Total Examples: {len(self.valid_loader.dataset)}")
|
|
self.model.eval()
|
|
valid_losses = defaultdict(list)
|
|
num_seen_utts = 1
|
|
total_loss = 0.0
|
|
valid_total_label = []
|
|
valid_total_predict = []
|
|
for i, batch in enumerate(self.valid_loader):
|
|
input, label = batch
|
|
label = paddle.reshape(label, shape=[-1])
|
|
y, logit = self.model(input)
|
|
pred = paddle.argmax(logit, axis=1)
|
|
valid_total_label.extend(label.numpy().tolist())
|
|
valid_total_predict.extend(pred.numpy().tolist())
|
|
loss = self.crit(y, label)
|
|
|
|
if paddle.isfinite(loss):
|
|
num_utts = batch[1].shape[0]
|
|
num_seen_utts += num_utts
|
|
total_loss += float(loss) * num_utts
|
|
valid_losses["val_loss"].append(float(loss))
|
|
|
|
if (i + 1) % self.config["training"]["log_interval"] == 0:
|
|
valid_dump = {k: np.mean(v) for k, v in valid_losses.items()}
|
|
valid_dump["val_history_loss"] = total_loss / num_seen_utts
|
|
|
|
# logging
|
|
msg = f"Valid: Rank: {dist.get_rank()}, "
|
|
msg += "epoch: {}, ".format(self.epoch)
|
|
msg += "step: {}, ".format(self.iteration)
|
|
msg += "batch : {}/{}, ".format(i + 1, len(self.valid_loader))
|
|
msg += ", ".join("{}: {:>.6f}".format(k, v)
|
|
for k, v in valid_dump.items())
|
|
self.logger.info(msg)
|
|
# print(msg)
|
|
|
|
self.logger.info("Rank {} Val info val_loss {}".format(
|
|
dist.get_rank(), total_loss / num_seen_utts))
|
|
# print("Rank {} Val info val_loss {} acc: {}".format(
|
|
# dist.get_rank(), total_loss / num_seen_utts, acc))
|
|
F1_score = f1_score(
|
|
valid_total_label, valid_total_predict, average="macro")
|
|
return total_loss / num_seen_utts, F1_score
|
|
|
|
def setup_model(self):
|
|
config = self.config
|
|
|
|
model = DefinedClassifier[self.config["model_type"]](
|
|
**self.config["model_params"])
|
|
self.crit = DefinedLoss[self.config["loss_type"]](**self.config[
|
|
"loss"]) if "loss_type" in self.config else DefinedLoss["ce"]()
|
|
|
|
if self.parallel:
|
|
model = paddle.DataParallel(model)
|
|
|
|
self.logger.info(f"{model}")
|
|
layer_tools.print_params(model, self.logger.info)
|
|
|
|
lr_scheduler = paddle.optimizer.lr.ExponentialDecay(
|
|
learning_rate=config["training"]["lr"],
|
|
gamma=config["training"]["lr_decay"],
|
|
verbose=True)
|
|
optimizer = paddle.optimizer.Adam(
|
|
learning_rate=lr_scheduler,
|
|
parameters=model.parameters(),
|
|
weight_decay=paddle.regularizer.L2Decay(
|
|
config["training"]["weight_decay"]))
|
|
|
|
self.model = model
|
|
self.optimizer = optimizer
|
|
self.lr_scheduler = lr_scheduler
|
|
self.logger.info("Setup model/criterion/optimizer/lr_scheduler!")
|
|
|
|
def setup_dataloader(self):
|
|
print("setup_dataloader!!!")
|
|
config = self.config["data"].copy()
|
|
|
|
print(config["batch_size"])
|
|
|
|
train_dataset = DefinedDataset[config["dataset_type"]](
|
|
train_path=config["train_path"], **config["data_params"])
|
|
dev_dataset = DefinedDataset[config["dataset_type"]](
|
|
train_path=config["dev_path"], **config["data_params"])
|
|
|
|
# train_dataset = config["dataset_type"](os.path.join(config["save_path"], "train"),
|
|
# os.path.join(config["save_path"], config["vocab_file"]),
|
|
# os.path.join(config["save_path"], config["punc_file"]),
|
|
# config["seq_len"])
|
|
|
|
# dev_dataset = PuncDataset(os.path.join(config["save_path"], "dev"),
|
|
# os.path.join(config["save_path"], config["vocab_file"]),
|
|
# os.path.join(config["save_path"], config["punc_file"]),
|
|
# config["seq_len"])
|
|
|
|
# if self.parallel:
|
|
# batch_sampler = SortagradDistributedBatchSampler(
|
|
# train_dataset,
|
|
# batch_size=config["batch_size"],
|
|
# num_replicas=None,
|
|
# rank=None,
|
|
# shuffle=True,
|
|
# drop_last=True,
|
|
# sortagrad=config["sortagrad"],
|
|
# shuffle_method=config["shuffle_method"])
|
|
# else:
|
|
# batch_sampler = SortagradBatchSampler(
|
|
# train_dataset,
|
|
# shuffle=True,
|
|
# batch_size=config["batch_size"],
|
|
# drop_last=True,
|
|
# sortagrad=config["sortagrad"],
|
|
# shuffle_method=config["shuffle_method"])
|
|
|
|
self.train_loader = DataLoader(
|
|
train_dataset,
|
|
num_workers=config["num_workers"],
|
|
batch_size=config["batch_size"])
|
|
self.valid_loader = DataLoader(
|
|
dev_dataset,
|
|
batch_size=config["batch_size"],
|
|
shuffle=False,
|
|
drop_last=False,
|
|
num_workers=config["num_workers"])
|
|
self.logger.info("Setup train/valid Dataloader!")
|
|
|
|
|
|
class Tester(Trainer):
|
|
def __init__(self, config, args):
|
|
super().__init__(config, args)
|
|
|
|
@mp_tools.rank_zero_only
|
|
@paddle.no_grad()
|
|
def test(self):
|
|
self.logger.info(
|
|
f"Test Total Examples: {len(self.test_loader.dataset)}")
|
|
self.punc_list = []
|
|
for i in range(len(self.test_loader.dataset.id2punc)):
|
|
self.punc_list.append(self.test_loader.dataset.id2punc[i])
|
|
self.model.eval()
|
|
test_total_label = []
|
|
test_total_predict = []
|
|
with open(self.args.result_file, 'w') as fout:
|
|
for i, batch in enumerate(self.test_loader):
|
|
input, label = batch
|
|
label = paddle.reshape(label, shape=[-1])
|
|
y, logit = self.model(input)
|
|
pred = paddle.argmax(logit, axis=1)
|
|
test_total_label.extend(label.numpy().tolist())
|
|
test_total_predict.extend(pred.numpy().tolist())
|
|
# print(type(logit))
|
|
|
|
# logging
|
|
msg = "Test: "
|
|
msg += "epoch: {}, ".format(self.epoch)
|
|
msg += "step: {}, ".format(self.iteration)
|
|
self.logger.info(msg)
|
|
# print(msg)
|
|
t = classification_report(
|
|
test_total_label, test_total_predict, target_names=self.punc_list)
|
|
print(t)
|
|
t2 = self.evaluation(test_total_label, test_total_predict)
|
|
print(t2)
|
|
|
|
def evaluation(self, y_pred, y_test):
|
|
precision, recall, f1, _ = precision_recall_fscore_support(
|
|
y_test, y_pred, average=None, labels=[1, 2, 3])
|
|
overall = precision_recall_fscore_support(
|
|
y_test, y_pred, average='macro', labels=[1, 2, 3])
|
|
result = pd.DataFrame(
|
|
np.array([precision, recall, f1]),
|
|
columns=list(['O', 'COMMA', 'PERIOD', 'QUESTION'])[1:],
|
|
index=['Precision', 'Recall', 'F1'])
|
|
result['OVERALL'] = overall[:3]
|
|
return result
|
|
|
|
def run_test(self):
|
|
self.resume_or_scratch()
|
|
try:
|
|
self.test()
|
|
except KeyboardInterrupt:
|
|
exit(-1)
|
|
|
|
def setup(self):
|
|
"""Setup the experiment.
|
|
"""
|
|
paddle.set_device(self.args.device)
|
|
self.setup_logger()
|
|
self.setup_output_dir()
|
|
self.setup_checkpointer()
|
|
|
|
self.setup_dataloader()
|
|
self.setup_model()
|
|
|
|
self.iteration = 0
|
|
self.epoch = 0
|
|
|
|
def setup_model(self):
|
|
config = self.config
|
|
model = DefinedClassifier[self.config["model_type"]](
|
|
**self.config["model_params"])
|
|
|
|
self.model = model
|
|
self.logger.info("Setup model!")
|
|
|
|
def setup_dataloader(self):
|
|
config = self.config["data"].copy()
|
|
|
|
test_dataset = DefinedDataset[config["dataset_type"]](
|
|
train_path=config["test_path"], **config["data_params"])
|
|
|
|
self.test_loader = DataLoader(
|
|
test_dataset,
|
|
batch_size=config["batch_size"],
|
|
shuffle=False,
|
|
drop_last=False)
|
|
self.logger.info("Setup test Dataloader!")
|
|
|
|
def setup_output_dir(self):
|
|
"""Create a directory used for output.
|
|
"""
|
|
# output dir
|
|
if self.args.output:
|
|
output_dir = Path(self.args.output).expanduser()
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
else:
|
|
output_dir = Path(
|
|
self.args.checkpoint_path).expanduser().parent.parent
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
self.output_dir = output_dir
|
|
|
|
def setup_logger(self):
|
|
LOG_FORMAT = "%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s"
|
|
format_str = logging.Formatter(
|
|
'%(asctime)s - %(pathname)s[line:%(lineno)d] - %(levelname)s: %(message)s'
|
|
)
|
|
logging.basicConfig(
|
|
filename=self.config["testing"]["log_path"],
|
|
level=logging.INFO,
|
|
format=LOG_FORMAT)
|
|
self.logger = logging.getLogger(__name__)
|
|
# self.logger = logging.getLogger(self.config["training"]["log_path"].strip().split('/')[-1].split('.')[0])
|
|
|
|
self.logger.setLevel(logging.INFO) #设置日志级别
|
|
sh = logging.StreamHandler() #往屏幕上输出
|
|
sh.setFormatter(format_str) #设置屏幕上显示的格式
|
|
self.logger.addHandler(sh) #把对象加到logger里
|
|
|
|
self.logger.info('info')
|
|
print("setup test logger!!!")
|