You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/s2t/modules/ctc.py

470 lines
19 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Union
import paddle
from paddle import nn
from paddle.nn import functional as F
from typeguard import check_argument_types
from paddlespeech.s2t.modules.loss import CTCLoss
from paddlespeech.s2t.utils import ctc_utils
from paddlespeech.s2t.utils.log import Log
logger = Log(__name__).getlog()
try:
from paddlespeech.s2t.decoders.ctcdecoder import ctc_beam_search_decoding_batch # noqa: F401
from paddlespeech.s2t.decoders.ctcdecoder import ctc_greedy_decoding # noqa: F401
from paddlespeech.s2t.decoders.ctcdecoder import Scorer # noqa: F401
from paddlespeech.s2t.decoders.ctcdecoder import CTCBeamSearchDecoder # noqa: F401
except ImportError:
try:
from paddlespeech.s2t.utils import dynamic_pip_install
package_name = 'paddlespeech_ctcdecoders'
dynamic_pip_install.install(package_name)
from paddlespeech.s2t.decoders.ctcdecoder import ctc_beam_search_decoding_batch # noqa: F401
from paddlespeech.s2t.decoders.ctcdecoder import ctc_greedy_decoding # noqa: F401
from paddlespeech.s2t.decoders.ctcdecoder import Scorer # noqa: F401
from paddlespeech.s2t.decoders.ctcdecoder import CTCBeamSearchDecoder # noqa: F401
except Exception as e:
logger.info("paddlespeech_ctcdecoders not installed!")
__all__ = ['CTCDecoder']
class CTCDecoderBase(nn.Layer):
def __init__(self,
odim,
enc_n_units,
blank_id=0,
dropout_rate: float=0.0,
reduction: bool=True,
batch_average: bool=True,
grad_norm_type: Union[str, None]=None):
"""CTC decoder
Args:
odim ([int]): text vocabulary size
enc_n_units ([int]): encoder output dimention
dropout_rate (float): dropout rate (0.0 ~ 1.0)
reduction (bool): reduce the CTC loss into a scalar, True for 'sum' or 'none'
batch_average (bool): do batch dim wise average.
grad_norm_type (str): Default, None. one of 'instance', 'batch', 'frame', None.
"""
assert check_argument_types()
super().__init__()
self.blank_id = blank_id
self.odim = odim
self.dropout = nn.Dropout(dropout_rate)
self.ctc_lo = nn.Linear(enc_n_units, self.odim)
reduction_type = "sum" if reduction else "none"
self.criterion = CTCLoss(
blank=self.blank_id,
reduction=reduction_type,
batch_average=batch_average,
grad_norm_type=grad_norm_type)
def forward(self, hs_pad, hlens, ys_pad, ys_lens):
"""Calculate CTC loss.
Args:
hs_pad (Tensor): batch of padded hidden state sequences (B, Tmax, D)
hlens (Tensor): batch of lengths of hidden state sequences (B)
ys_pad (Tensor): batch of padded character id sequence tensor (B, Lmax)
ys_lens (Tensor): batch of lengths of character sequence (B)
Returns:
loss (Tensor): ctc loss value, scalar.
"""
logits = self.ctc_lo(self.dropout(hs_pad))
loss = self.criterion(logits, ys_pad, hlens, ys_lens)
return loss
def softmax(self, eouts: paddle.Tensor, temperature: float=1.0):
"""Get CTC probabilities.
Args:
eouts (FloatTensor): `[B, T, enc_units]`
Returns:
probs (FloatTensor): `[B, T, odim]`
"""
self.probs = F.softmax(self.ctc_lo(eouts) / temperature, axis=2)
return self.probs
def log_softmax(self, hs_pad: paddle.Tensor,
temperature: float=1.0) -> paddle.Tensor:
"""log_softmax of frame activations
Args:
Tensor hs_pad: 3d tensor (B, Tmax, eprojs)
Returns:
paddle.Tensor: log softmax applied 3d tensor (B, Tmax, odim)
"""
return F.log_softmax(self.ctc_lo(hs_pad) / temperature, axis=2)
def argmax(self, hs_pad: paddle.Tensor) -> paddle.Tensor:
"""argmax of frame activations
Args:
paddle.Tensor hs_pad: 3d tensor (B, Tmax, eprojs)
Returns:
paddle.Tensor: argmax applied 2d tensor (B, Tmax)
"""
return paddle.argmax(self.ctc_lo(hs_pad), dim=2)
def forced_align(self,
ctc_probs: paddle.Tensor,
y: paddle.Tensor,
blank_id=0) -> list:
"""ctc forced alignment.
Args:
ctc_probs (paddle.Tensor): hidden state sequence, 2d tensor (T, D)
y (paddle.Tensor): label id sequence tensor, 1d tensor (L)
blank_id (int): blank symbol index
Returns:
paddle.Tensor: best alignment result, (T).
"""
return ctc_utils.forced_align(ctc_probs, y, blank_id)
class CTCDecoder(CTCDecoderBase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# CTCDecoder LM Score handle
self._ext_scorer = None
self.beam_search_decoder = None
def _decode_batch_greedy_offline(self, probs_split, vocab_list):
"""This function will be deprecated in future.
Decode by best path for a batch of probs matrix input.
:param probs_split: List of 2-D probability matrix, and each consists
of prob vectors for one speech utterancce.
:param probs_split: List of matrix
:param vocab_list: List of tokens in the vocabulary, for decoding.
:type vocab_list: list
:return: List of transcription texts.
:rtype: List of str
"""
results = []
for i, probs in enumerate(probs_split):
output_transcription = ctc_greedy_decoding(
probs_seq=probs, vocabulary=vocab_list, blank_id=self.blank_id)
results.append(output_transcription)
return results
def _init_ext_scorer(self, beam_alpha, beam_beta, language_model_path,
vocab_list):
"""Initialize the external scorer.
:param beam_alpha: Parameter associated with language model.
:type beam_alpha: float
:param beam_beta: Parameter associated with word count.
:type beam_beta: float
:param language_model_path: Filepath for language model. If it is
empty, the external scorer will be set to
None, and the decoding method will be pure
beam search without scorer.
:type language_model_path: str|None
:param vocab_list: List of tokens in the vocabulary, for decoding.
:type vocab_list: list
"""
# init once
if self._ext_scorer is not None:
return
if language_model_path != '':
logger.info("begin to initialize the external scorer "
"for decoding")
self._ext_scorer = Scorer(beam_alpha, beam_beta,
language_model_path, vocab_list)
lm_char_based = self._ext_scorer.is_character_based()
lm_max_order = self._ext_scorer.get_max_order()
lm_dict_size = self._ext_scorer.get_dict_size()
logger.info("language model: "
"is_character_based = %d," % lm_char_based +
" max_order = %d," % lm_max_order + " dict_size = %d" %
lm_dict_size)
logger.info("end initializing scorer")
else:
self._ext_scorer = None
logger.info("no language model provided, "
"decoding by pure beam search without scorer.")
def _decode_batch_beam_search_offline(
self, probs_split, beam_alpha, beam_beta, beam_size, cutoff_prob,
cutoff_top_n, vocab_list, num_processes):
"""
This function will be deprecated in future.
Decode by beam search for a batch of probs matrix input.
:param probs_split: List of 2-D probability matrix, and each consists
of prob vectors for one speech utterancce.
:param probs_split: List of matrix
:param beam_alpha: Parameter associated with language model.
:type beam_alpha: float
:param beam_beta: Parameter associated with word count.
:type beam_beta: float
:param beam_size: Width for Beam search.
:type beam_size: int
:param cutoff_prob: Cutoff probability in pruning,
default 1.0, no pruning.
:type cutoff_prob: float
:param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n
characters with highest probs in vocabulary will be
used in beam search, default 40.
:type cutoff_top_n: int
:param vocab_list: List of tokens in the vocabulary, for decoding.
:type vocab_list: list
:param num_processes: Number of processes (CPU) for decoder.
:type num_processes: int
:return: List of transcription texts.
:rtype: List of str
"""
if self._ext_scorer is not None:
self._ext_scorer.reset_params(beam_alpha, beam_beta)
# beam search decode
num_processes = min(num_processes, len(probs_split))
beam_search_results = ctc_beam_search_decoding_batch(
probs_split=probs_split,
vocabulary=vocab_list,
beam_size=beam_size,
num_processes=num_processes,
ext_scoring_func=self._ext_scorer,
cutoff_prob=cutoff_prob,
cutoff_top_n=cutoff_top_n,
blank_id=self.blank_id)
results = [result[0][1] for result in beam_search_results]
return results
def init_decoder(self, batch_size, vocab_list, decoding_method,
lang_model_path, beam_alpha, beam_beta, beam_size,
cutoff_prob, cutoff_top_n, num_processes):
"""
init ctc decoders
Args:
batch_size(int): Batch size for input data
vocab_list (list): List of tokens in the vocabulary, for decoding
decoding_method (str): ctc_beam_search
lang_model_path (str): language model path
beam_alpha (float): beam_alpha
beam_beta (float): beam_beta
beam_size (int): beam_size
cutoff_prob (float): cutoff probability in beam search
cutoff_top_n (int): cutoff_top_n
num_processes (int): num_processes
Raises:
ValueError: when decoding_method not support.
Returns:
CTCBeamSearchDecoder
"""
self.batch_size = batch_size
self.vocab_list = vocab_list
self.decoding_method = decoding_method
self.beam_size = beam_size
self.cutoff_prob = cutoff_prob
self.cutoff_top_n = cutoff_top_n
self.num_processes = num_processes
if decoding_method == "ctc_beam_search":
self._init_ext_scorer(beam_alpha, beam_beta, lang_model_path,
vocab_list)
if self.beam_search_decoder is None:
self.beam_search_decoder = self.get_decoder(
vocab_list, batch_size, beam_alpha, beam_beta, beam_size,
num_processes, cutoff_prob, cutoff_top_n)
return self.beam_search_decoder
elif decoding_method == "ctc_greedy":
self._init_ext_scorer(beam_alpha, beam_beta, lang_model_path,
vocab_list)
else:
raise ValueError(f"Not support: {decoding_method}")
def decode_probs_offline(self, probs, logits_lens, vocab_list,
decoding_method, lang_model_path, beam_alpha,
beam_beta, beam_size, cutoff_prob, cutoff_top_n,
num_processes):
"""
This function will be deprecated in future.
ctc decoding with probs.
Args:
probs (Tensor): activation after softmax
logits_lens (Tensor): audio output lens
vocab_list (list): List of tokens in the vocabulary, for decoding
decoding_method (str): ctc_beam_search
lang_model_path (str): language model path
beam_alpha (float): beam_alpha
beam_beta (float): beam_beta
beam_size (int): beam_size
cutoff_prob (float): cutoff probability in beam search
cutoff_top_n (int): cutoff_top_n
num_processes (int): num_processes
Raises:
ValueError: when decoding_method not support.
Returns:
List[str]: transcripts.
"""
logger.warn(
"This function will be deprecated in future: decode_probs_offline")
probs_split = [probs[i, :l, :] for i, l in enumerate(logits_lens)]
if decoding_method == "ctc_greedy":
result_transcripts = self._decode_batch_greedy_offline(
probs_split=probs_split, vocab_list=vocab_list)
elif decoding_method == "ctc_beam_search":
result_transcripts = self._decode_batch_beam_search_offline(
probs_split=probs_split,
beam_alpha=beam_alpha,
beam_beta=beam_beta,
beam_size=beam_size,
cutoff_prob=cutoff_prob,
cutoff_top_n=cutoff_top_n,
vocab_list=vocab_list,
num_processes=num_processes)
else:
raise ValueError(f"Not support: {decoding_method}")
return result_transcripts
def get_decoder(self, vocab_list, batch_size, beam_alpha, beam_beta,
beam_size, num_processes, cutoff_prob, cutoff_top_n):
"""
init get ctc decoder
Args:
vocab_list (list): List of tokens in the vocabulary, for decoding.
batch_size(int): Batch size for input data
beam_alpha (float): beam_alpha
beam_beta (float): beam_beta
beam_size (int): beam_size
num_processes (int): num_processes
cutoff_prob (float): cutoff probability in beam search
cutoff_top_n (int): cutoff_top_n
Raises:
ValueError: when decoding_method not support.
Returns:
CTCBeamSearchDecoder
"""
num_processes = min(num_processes, batch_size)
if self._ext_scorer is not None:
self._ext_scorer.reset_params(beam_alpha, beam_beta)
if self.decoding_method == "ctc_beam_search":
beam_search_decoder = CTCBeamSearchDecoder(
vocab_list, batch_size, beam_size, num_processes, cutoff_prob,
cutoff_top_n, self._ext_scorer, self.blank_id)
else:
raise ValueError(f"Not support: {decoding_method}")
return beam_search_decoder
def next(self, probs, logits_lens):
"""
Input probs into ctc decoder
Args:
probs (list(list(float))): probs for a batch of data
logits_lens (list(int)): logits lens for a batch of data
Raises:
Exception: when the ctc decoder is not initialized
ValueError: when decoding_method not support.
"""
if self.beam_search_decoder is None:
raise Exception(
"You need to initialize the beam_search_decoder firstly")
beam_search_decoder = self.beam_search_decoder
has_value = (logits_lens > 0).tolist()
has_value = [
"true" if has_value[i] is True else "false"
for i in range(len(has_value))
]
probs_split = [
probs[i, :l, :].tolist() if has_value[i] else probs[i].tolist()
for i, l in enumerate(logits_lens)
]
if self.decoding_method == "ctc_beam_search":
beam_search_decoder.next(probs_split, has_value)
else:
raise ValueError(f"Not support: {decoding_method}")
return
def decode(self):
"""
Get the decoding result
Raises:
Exception: when the ctc decoder is not initialized
ValueError: when decoding_method not support.
Returns:
results_best (list(str)): The best result for a batch of data
results_beam (list(list(str))): The beam search result for a batch of data
"""
if self.beam_search_decoder is None:
raise Exception(
"You need to initialize the beam_search_decoder firstly")
beam_search_decoder = self.beam_search_decoder
if self.decoding_method == "ctc_beam_search":
batch_beam_results = beam_search_decoder.decode()
batch_beam_results = [[(res[0], res[1]) for res in beam_results]
for beam_results in batch_beam_results]
results_best = [result[0][1] for result in batch_beam_results]
results_beam = [[trans[1] for trans in result]
for result in batch_beam_results]
else:
raise ValueError(f"Not support: {decoding_method}")
return results_best, results_beam
def reset_decoder(self,
batch_size=-1,
beam_size=-1,
num_processes=-1,
cutoff_prob=-1.0,
cutoff_top_n=-1):
if batch_size > 0:
self.batch_size = batch_size
if beam_size > 0:
self.beam_size = beam_size
if num_processes > 0:
self.num_processes = num_processes
if cutoff_prob > 0:
self.cutoff_prob = cutoff_prob
if cutoff_top_n > 0:
self.cutoff_top_n = cutoff_top_n
"""
Reset the decoder state
Args:
batch_size(int): Batch size for input data
beam_size (int): beam_size
num_processes (int): num_processes
cutoff_prob (float): cutoff probability in beam search
cutoff_top_n (int): cutoff_top_n
Raises:
Exception: when the ctc decoder is not initialized
"""
if self.beam_search_decoder is None:
raise Exception(
"You need to initialize the beam_search_decoder firstly")
self.beam_search_decoder.reset_state(
self.batch_size, self.beam_size, self.num_processes,
self.cutoff_prob, self.cutoff_top_n)
def del_decoder(self):
"""
Delete the decoder
"""
if self.beam_search_decoder is not None:
del self.beam_search_decoder
self.beam_search_decoder = None