|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
#
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
# You may obtain a copy of the License at
|
|
|
#
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
#
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
# See the License for the specific language governing permissions and
|
|
|
# limitations under the License.
|
|
|
import paddle
|
|
|
import paddle.nn as nn
|
|
|
import paddle.nn.initializer as I
|
|
|
|
|
|
|
|
|
class BiLSTM(nn.Layer):
|
|
|
"""LSTM for Punctuation Restoration
|
|
|
"""
|
|
|
|
|
|
def __init__(self,
|
|
|
vocab_size,
|
|
|
embedding_size,
|
|
|
hidden_size,
|
|
|
num_layers,
|
|
|
num_class,
|
|
|
init_scale=0.1):
|
|
|
super(BiLSTM, self).__init__()
|
|
|
# hyper parameters
|
|
|
self.vocab_size = vocab_size
|
|
|
self.embedding_size = embedding_size
|
|
|
self.hidden_size = hidden_size
|
|
|
self.num_layers = num_layers
|
|
|
self.num_class = num_class
|
|
|
|
|
|
# 网络中的层
|
|
|
self.embedding = nn.Embedding(
|
|
|
vocab_size,
|
|
|
embedding_size,
|
|
|
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
|
|
|
low=-init_scale, high=init_scale)))
|
|
|
# print(hidden_size)
|
|
|
# print(embedding_size)
|
|
|
self.lstm = nn.LSTM(
|
|
|
input_size=embedding_size,
|
|
|
hidden_size=hidden_size,
|
|
|
num_layers=num_layers,
|
|
|
direction="bidirect",
|
|
|
weight_ih_attr=paddle.ParamAttr(initializer=I.Uniform(
|
|
|
low=-init_scale, high=init_scale)),
|
|
|
weight_hh_attr=paddle.ParamAttr(initializer=I.Uniform(
|
|
|
low=-init_scale, high=init_scale)))
|
|
|
# Here is a one direction LSTM. If bidirection LSTM, (hidden_size*2(,))
|
|
|
self.fc = nn.Linear(
|
|
|
in_features=hidden_size * 2,
|
|
|
out_features=num_class,
|
|
|
weight_attr=paddle.ParamAttr(initializer=I.Uniform(
|
|
|
low=-init_scale, high=init_scale)),
|
|
|
bias_attr=paddle.ParamAttr(initializer=I.Uniform(
|
|
|
low=-init_scale, high=init_scale)))
|
|
|
# self.fc = nn.Linear(hidden_size, num_class)
|
|
|
|
|
|
self.softmax = nn.Softmax()
|
|
|
|
|
|
def forward(self, input):
|
|
|
"""The forward process of Net
|
|
|
Parameters
|
|
|
----------
|
|
|
inputs : tensor
|
|
|
Training data, batch first
|
|
|
"""
|
|
|
# Inherit the knowledge of context
|
|
|
|
|
|
# hidden = self.init_hidden(inputs.size(0))
|
|
|
# print('input_size',inputs.size())
|
|
|
embedding = self.embedding(input)
|
|
|
# print('embedding_size', embedding.size())
|
|
|
# packed = pack_sequence(embedding, inputs_lengths, batch_first=True)
|
|
|
# embedding本身是同样长度的,用这个函数主要是为了用pack
|
|
|
# *****************************************************************************
|
|
|
y, (_, _) = self.lstm(embedding)
|
|
|
|
|
|
# print(y.size())
|
|
|
y = self.fc(y)
|
|
|
y = paddle.reshape(y, shape=[-1, self.num_class])
|
|
|
logit = self.softmax(y)
|
|
|
return y, logit
|