You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/kws/exps/mdtc/train.py

206 lines
6.7 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import paddle
from loss import max_pooling_loss
from mdtc import KWSModel
from mdtc import MDTC
from paddleaudio.datasets import HeySnips
from paddleaudio.utils import logger
from paddleaudio.utils import Timer
def collate_features(batch):
# (key, feat, label)
collate_start = time.time()
keys = []
feats = []
labels = []
lengths = []
for sample in batch:
keys.append(sample[0])
feats.append(sample[1])
labels.append(sample[2])
lengths.append(sample[1].shape[0])
max_length = max(lengths)
for i in range(len(feats)):
feats[i] = paddle.nn.functional.pad(
feats[i], [0, max_length - feats[i].shape[0], 0, 0],
data_format='NLC')
return keys, paddle.stack(feats), paddle.to_tensor(
labels), paddle.to_tensor(lengths)
if __name__ == '__main__':
# Dataset
feat_conf = {
# 'n_mfcc': 80,
'n_mels': 80,
'frame_shift': 10,
'frame_length': 25,
# 'dither': 1.0,
}
data_dir = '/ssd1/chenxiaojie06/datasets/hey_snips/hey_snips_research_6k_en_train_eval_clean_ter'
train_ds = HeySnips(
data_dir=data_dir,
mode='train',
feat_type='kaldi_fbank',
sample_rate=16000,
**feat_conf)
dev_ds = HeySnips(
data_dir=data_dir,
mode='dev',
feat_type='kaldi_fbank',
sample_rate=16000,
**feat_conf)
training_conf = {
'epochs': 100,
'learning_rate': 0.001,
'weight_decay': 0.00005,
'num_workers': 16,
'batch_size': 100,
'checkpoint_dir': './checkpoint',
'save_freq': 10,
'log_freq': 10,
}
train_sampler = paddle.io.BatchSampler(
train_ds,
batch_size=training_conf['batch_size'],
shuffle=True,
drop_last=False)
train_loader = paddle.io.DataLoader(
train_ds,
batch_sampler=train_sampler,
num_workers=training_conf['num_workers'],
return_list=True,
use_buffer_reader=True,
collate_fn=collate_features, )
# Model
backbone = MDTC(
stack_num=3,
stack_size=4,
in_channels=80,
res_channels=32,
kernel_size=5,
causal=True, )
model = KWSModel(backbone=backbone, num_keywords=1)
model = paddle.DataParallel(model)
clip = paddle.nn.ClipGradByGlobalNorm(5.0)
optimizer = paddle.optimizer.Adam(
learning_rate=training_conf['learning_rate'],
weight_decay=training_conf['weight_decay'],
parameters=model.parameters(),
grad_clip=clip)
criterion = max_pooling_loss
steps_per_epoch = len(train_sampler)
timer = Timer(steps_per_epoch * training_conf['epochs'])
timer.start()
for epoch in range(1, training_conf['epochs'] + 1):
model.train()
avg_loss = 0
num_corrects = 0
num_samples = 0
batch_start = time.time()
for batch_idx, batch in enumerate(train_loader):
# print('Fetch one batch: {:.4f}'.format(time.time()-batch_start))
keys, feats, labels, lengths = batch
logits = model(feats)
loss, corrects, acc = criterion(logits, labels, lengths)
loss.backward()
optimizer.step()
if isinstance(optimizer._learning_rate,
paddle.optimizer.lr.LRScheduler):
optimizer._learning_rate.step()
optimizer.clear_grad()
# Calculate loss
avg_loss += loss.numpy()[0]
# Calculate metrics
num_corrects += corrects
num_samples += feats.shape[0]
timer.count()
if (batch_idx + 1) % training_conf['log_freq'] == 0:
lr = optimizer.get_lr()
avg_loss /= training_conf['log_freq']
avg_acc = num_corrects / num_samples
print_msg = 'Epoch={}/{}, Step={}/{}'.format(
epoch, training_conf['epochs'], batch_idx + 1,
steps_per_epoch)
print_msg += ' loss={:.4f}'.format(avg_loss)
print_msg += ' acc={:.4f}'.format(avg_acc)
print_msg += ' lr={:.6f} step/sec={:.2f} | ETA {}'.format(
lr, timer.timing, timer.eta)
logger.train(print_msg)
avg_loss = 0
num_corrects = 0
num_samples = 0
batch_start = time.time()
if epoch % training_conf[
'save_freq'] == 0 and batch_idx + 1 == steps_per_epoch:
dev_sampler = paddle.io.BatchSampler(
dev_ds,
batch_size=training_conf['batch_size'],
shuffle=False,
drop_last=False)
dev_loader = paddle.io.DataLoader(
dev_ds,
batch_sampler=dev_sampler,
num_workers=training_conf['num_workers'],
return_list=True,
use_buffer_reader=True,
collate_fn=collate_features, )
model.eval()
num_corrects = 0
num_samples = 0
with logger.processing('Evaluation on validation dataset'):
for batch_idx, batch in enumerate(dev_loader):
keys, feats, labels, lengths = batch
logits = model(feats)
loss, corrects, acc = criterion(logits, labels, lengths)
num_corrects += corrects
num_samples += feats.shape[0]
eval_acc = num_corrects / num_samples
print_msg = '[Evaluation result]'
print_msg += ' dev_acc={:.4f}'.format(eval_acc)
logger.eval(print_msg)
# Save model
save_dir = os.path.join(training_conf['checkpoint_dir'],
'epoch_{}_{:.4f}'.format(epoch, eval_acc))
logger.info('Saving model checkpoint to {}'.format(save_dir))
paddle.save(model.state_dict(),
os.path.join(save_dir, 'model.pdparams'))
paddle.save(optimizer.state_dict(),
os.path.join(save_dir, 'model.pdopt'))