You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/kws/exps/mdtc/compute_det.py

122 lines
4.8 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import sys
from tqdm import tqdm
def load_label_and_score(keyword, label_file, score_file):
# score_table: {uttid: [keywordlist]}
score_table = {}
with open(score_file, 'r', encoding='utf8') as fin:
for line in fin:
arr = line.strip().split()
key = arr[0]
current_keyword = arr[1]
str_list = arr[2:]
if int(current_keyword) == keyword:
scores = list(map(float, str_list))
if key not in score_table:
score_table.update({key: scores})
keyword_table = {}
filler_table = {}
filler_duration = 0.0
with open(label_file, 'r', encoding='utf8') as fin:
for line in fin:
obj = json.loads(line.strip())
assert 'key' in obj
assert 'txt' in obj
assert 'duration' in obj
key = obj['key']
index = obj['txt']
duration = obj['duration']
assert key in score_table
if index == keyword:
keyword_table[key] = score_table[key]
else:
filler_table[key] = score_table[key]
filler_duration += duration
return keyword_table, filler_table, filler_duration
class Args:
def __init__(self):
self.test_data = '/ssd3/chenxiaojie06/PaddleSpeech/DeepSpeech/paddlespeech/kws/models/data/test/data.list'
self.keyword = 0
self.score_file = os.path.join(
os.path.abspath(sys.argv[1]), 'score.txt')
self.stats_file = os.path.join(
os.path.abspath(sys.argv[1]), 'stats.0.txt')
self.step = 0.01
self.window_shift = 50
args = Args()
if __name__ == '__main__':
# parser = argparse.ArgumentParser(description='compute det curve')
# parser.add_argument('--test_data', required=True, help='label file')
# parser.add_argument('--keyword', type=int, default=0, help='keyword label')
# parser.add_argument('--score_file', required=True, help='score file')
# parser.add_argument('--step', type=float, default=0.01,
# help='threshold step')
# parser.add_argument('--window_shift', type=int, default=50,
# help='window_shift is used to skip the frames after triggered')
# parser.add_argument('--stats_file',
# required=True,
# help='false reject/alarm stats file')
# args = parser.parse_args()
window_shift = args.window_shift
keyword_table, filler_table, filler_duration = load_label_and_score(
args.keyword, args.test_data, args.score_file)
print('Filler total duration Hours: {}'.format(filler_duration / 3600.0))
pbar = tqdm(total=int(1.0 / args.step))
with open(args.stats_file, 'w', encoding='utf8') as fout:
keyword_index = int(args.keyword)
threshold = 0.0
while threshold <= 1.0:
num_false_reject = 0
# transverse the all keyword_table
for key, score_list in keyword_table.items():
# computer positive test sample, use the max score of list.
score = max(score_list)
if float(score) < threshold:
num_false_reject += 1
num_false_alarm = 0
# transverse the all filler_table
for key, score_list in filler_table.items():
i = 0
while i < len(score_list):
if score_list[i] >= threshold:
num_false_alarm += 1
i += window_shift
else:
i += 1
if len(keyword_table) != 0:
false_reject_rate = num_false_reject / len(keyword_table)
num_false_alarm = max(num_false_alarm, 1e-6)
if filler_duration != 0:
false_alarm_per_hour = num_false_alarm / \
(filler_duration / 3600.0)
fout.write('{:.6f} {:.6f} {:.6f}\n'.format(
threshold, false_alarm_per_hour, false_reject_rate))
threshold += args.step
pbar.update(1)
pbar.close()
print('DET saved to: {}'.format(args.stats_file))