You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
122 lines
4.8 KiB
122 lines
4.8 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import json
|
|
import os
|
|
import sys
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
def load_label_and_score(keyword, label_file, score_file):
|
|
# score_table: {uttid: [keywordlist]}
|
|
score_table = {}
|
|
with open(score_file, 'r', encoding='utf8') as fin:
|
|
for line in fin:
|
|
arr = line.strip().split()
|
|
key = arr[0]
|
|
current_keyword = arr[1]
|
|
str_list = arr[2:]
|
|
if int(current_keyword) == keyword:
|
|
scores = list(map(float, str_list))
|
|
if key not in score_table:
|
|
score_table.update({key: scores})
|
|
keyword_table = {}
|
|
filler_table = {}
|
|
filler_duration = 0.0
|
|
with open(label_file, 'r', encoding='utf8') as fin:
|
|
for line in fin:
|
|
obj = json.loads(line.strip())
|
|
assert 'key' in obj
|
|
assert 'txt' in obj
|
|
assert 'duration' in obj
|
|
key = obj['key']
|
|
index = obj['txt']
|
|
duration = obj['duration']
|
|
assert key in score_table
|
|
if index == keyword:
|
|
keyword_table[key] = score_table[key]
|
|
else:
|
|
filler_table[key] = score_table[key]
|
|
filler_duration += duration
|
|
return keyword_table, filler_table, filler_duration
|
|
|
|
|
|
class Args:
|
|
def __init__(self):
|
|
self.test_data = '/ssd3/chenxiaojie06/PaddleSpeech/DeepSpeech/paddlespeech/kws/models/data/test/data.list'
|
|
self.keyword = 0
|
|
self.score_file = os.path.join(
|
|
os.path.abspath(sys.argv[1]), 'score.txt')
|
|
self.stats_file = os.path.join(
|
|
os.path.abspath(sys.argv[1]), 'stats.0.txt')
|
|
self.step = 0.01
|
|
self.window_shift = 50
|
|
|
|
|
|
args = Args()
|
|
|
|
if __name__ == '__main__':
|
|
# parser = argparse.ArgumentParser(description='compute det curve')
|
|
# parser.add_argument('--test_data', required=True, help='label file')
|
|
# parser.add_argument('--keyword', type=int, default=0, help='keyword label')
|
|
# parser.add_argument('--score_file', required=True, help='score file')
|
|
# parser.add_argument('--step', type=float, default=0.01,
|
|
# help='threshold step')
|
|
# parser.add_argument('--window_shift', type=int, default=50,
|
|
# help='window_shift is used to skip the frames after triggered')
|
|
# parser.add_argument('--stats_file',
|
|
# required=True,
|
|
# help='false reject/alarm stats file')
|
|
# args = parser.parse_args()
|
|
|
|
window_shift = args.window_shift
|
|
keyword_table, filler_table, filler_duration = load_label_and_score(
|
|
args.keyword, args.test_data, args.score_file)
|
|
print('Filler total duration Hours: {}'.format(filler_duration / 3600.0))
|
|
pbar = tqdm(total=int(1.0 / args.step))
|
|
with open(args.stats_file, 'w', encoding='utf8') as fout:
|
|
keyword_index = int(args.keyword)
|
|
threshold = 0.0
|
|
while threshold <= 1.0:
|
|
num_false_reject = 0
|
|
# transverse the all keyword_table
|
|
for key, score_list in keyword_table.items():
|
|
# computer positive test sample, use the max score of list.
|
|
score = max(score_list)
|
|
if float(score) < threshold:
|
|
num_false_reject += 1
|
|
num_false_alarm = 0
|
|
# transverse the all filler_table
|
|
for key, score_list in filler_table.items():
|
|
i = 0
|
|
while i < len(score_list):
|
|
if score_list[i] >= threshold:
|
|
num_false_alarm += 1
|
|
i += window_shift
|
|
else:
|
|
i += 1
|
|
if len(keyword_table) != 0:
|
|
false_reject_rate = num_false_reject / len(keyword_table)
|
|
num_false_alarm = max(num_false_alarm, 1e-6)
|
|
if filler_duration != 0:
|
|
false_alarm_per_hour = num_false_alarm / \
|
|
(filler_duration / 3600.0)
|
|
fout.write('{:.6f} {:.6f} {:.6f}\n'.format(
|
|
threshold, false_alarm_per_hour, false_reject_rate))
|
|
threshold += args.step
|
|
pbar.update(1)
|
|
|
|
pbar.close()
|
|
print('DET saved to: {}'.format(args.stats_file))
|