You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deepspeech/frontend/featurizer/text_featurizer.py

231 lines
7.1 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains the text featurizer class."""
from pprint import pformat
import sentencepiece as spm
from ..utility import BLANK
from ..utility import EOS
from ..utility import load_dict
from ..utility import MASKCTC
from ..utility import SOS
from ..utility import SPACE
from ..utility import UNK
from deepspeech.utils.log import Log
logger = Log(__name__).getlog()
__all__ = ["TextFeaturizer"]
class TextFeaturizer():
def __init__(self,
unit_type,
vocab_filepath,
spm_model_prefix=None,
maskctc=False):
"""Text featurizer, for processing or extracting features from text.
Currently, it supports char/word/sentence-piece level tokenizing and conversion into
a list of token indices. Note that the token indexing order follows the
given vocabulary file.
Args:
unit_type (str): unit type, e.g. char, word, spm
vocab_filepath (str): Filepath to load vocabulary for token indices conversion.
spm_model_prefix (str, optional): spm model prefix. Defaults to None.
"""
assert unit_type in ('char', 'spm', 'word')
self.unit_type = unit_type
self.unk = UNK
self.maskctc = maskctc
if vocab_filepath:
self.vocab_dict, self._id2token, self.vocab_list, self.unk_id, self.eos_id = self._load_vocabulary_from_file(
vocab_filepath, maskctc)
self.vocab_size = len(self.vocab_list)
if unit_type == 'spm':
spm_model = spm_model_prefix + '.model'
self.sp = spm.SentencePieceProcessor()
self.sp.Load(spm_model)
def tokenize(self, text, replace_space=True):
if self.unit_type == 'char':
tokens = self.char_tokenize(text, replace_space)
elif self.unit_type == 'word':
tokens = self.word_tokenize(text)
else: # spm
tokens = self.spm_tokenize(text)
return tokens
def detokenize(self, tokens):
if self.unit_type == 'char':
text = self.char_detokenize(tokens)
elif self.unit_type == 'word':
text = self.word_detokenize(tokens)
else: # spm
text = self.spm_detokenize(tokens)
return text
def featurize(self, text):
"""Convert text string to a list of token indices.
Args:
text (str): Text to process.
Returns:
List[int]: List of token indices.
"""
tokens = self.tokenize(text)
ids = []
for token in tokens:
token = token if token in self.vocab_dict else self.unk
ids.append(self.vocab_dict[token])
return ids
def defeaturize(self, idxs):
"""Convert a list of token indices to text string,
ignore index after eos_id.
Args:
idxs (List[int]): List of token indices.
Returns:
str: Text.
"""
tokens = []
for idx in idxs:
if idx == self.eos_id:
break
tokens.append(self._id2token[idx])
text = self.detokenize(tokens)
return text
def char_tokenize(self, text, replace_space=True):
"""Character tokenizer.
Args:
text (str): text string.
replace_space (bool): False only used by build_vocab.py.
Returns:
List[str]: tokens.
"""
text = text.strip()
if replace_space:
text_list = [SPACE if item == " " else item for item in list(text)]
else:
text_list = list(text)
return text_list
def char_detokenize(self, tokens):
"""Character detokenizer.
Args:
tokens (List[str]): tokens.
Returns:
str: text string.
"""
tokens = [t.replace(SPACE, " ") for t in tokens]
return "".join(tokens)
def word_tokenize(self, text):
"""Word tokenizer, separate by <space>."""
return text.strip().split()
def word_detokenize(self, tokens):
"""Word detokenizer, separate by <space>."""
return " ".join(tokens)
def spm_tokenize(self, text):
"""spm tokenize.
Args:
text (str): text string.
Returns:
List[str]: sentence pieces str code
"""
stats = {"num_empty": 0, "num_filtered": 0}
def valid(line):
return True
def encode(l):
return self.sp.EncodeAsPieces(l)
def encode_line(line):
line = line.strip()
if len(line) > 0:
line = encode(line)
if valid(line):
return line
else:
stats["num_filtered"] += 1
else:
stats["num_empty"] += 1
return None
enc_line = encode_line(text)
return enc_line
def spm_detokenize(self, tokens, input_format='piece'):
"""spm detokenize.
Args:
ids (List[str]): tokens.
Returns:
str: text
"""
if input_format == "piece":
def decode(l):
return "".join(self.sp.DecodePieces(l))
elif input_format == "id":
def decode(l):
return "".join(self.sp.DecodeIds(l))
return decode(tokens)
def _load_vocabulary_from_file(self, vocab_filepath: str, maskctc: bool):
"""Load vocabulary from file."""
vocab_list = load_dict(vocab_filepath, maskctc)
assert vocab_list is not None
logger.debug(f"Vocab: {pformat(vocab_list)}")
id2token = dict(
[(idx, token) for (idx, token) in enumerate(vocab_list)])
token2id = dict(
[(token, idx) for (idx, token) in enumerate(vocab_list)])
blank_id = vocab_list.index(BLANK) if BLANK in vocab_list else -1
maskctc_id = vocab_list.index(MASKCTC) if MASKCTC in vocab_list else -1
unk_id = vocab_list.index(UNK) if UNK in vocab_list else -1
eos_id = vocab_list.index(EOS) if EOS in vocab_list else -1
sos_id = vocab_list.index(SOS) if SOS in vocab_list else -1
space_id = vocab_list.index(SPACE) if SPACE in vocab_list else -1
logger.info(f"BLANK id: {blank_id}")
logger.info(f"UNK id: {unk_id}")
logger.info(f"EOS id: {eos_id}")
logger.info(f"SOS id: {sos_id}")
logger.info(f"SPACE id: {space_id}")
logger.info(f"MASKCTC id: {maskctc_id}")
return token2id, id2token, vocab_list, unk_id, eos_id