You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
126 lines
4.3 KiB
126 lines
4.3 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import time
|
|
|
|
from paddle import distributed as dist
|
|
from paddle.optimizer import Adam
|
|
from paddle import DataParallel
|
|
from paddle.io import DataLoader
|
|
from paddle.nn.clip import ClipGradByGlobalNorm
|
|
|
|
from parakeet.models.lstm_speaker_encoder import LSTMSpeakerEncoder
|
|
from parakeet.training import ExperimentBase
|
|
from parakeet.training import default_argument_parser
|
|
|
|
from speaker_verification_dataset import MultiSpeakerMelDataset
|
|
from speaker_verification_dataset import MultiSpeakerSampler
|
|
from speaker_verification_dataset import Collate
|
|
from config import get_cfg_defaults
|
|
|
|
|
|
class Ge2eExperiment(ExperimentBase):
|
|
def setup_model(self):
|
|
config = self.config
|
|
model = LSTMSpeakerEncoder(config.data.n_mels, config.model.num_layers,
|
|
config.model.hidden_size,
|
|
config.model.embedding_size)
|
|
optimizer = Adam(
|
|
config.training.learning_rate_init,
|
|
parameters=model.parameters(),
|
|
grad_clip=ClipGradByGlobalNorm(3))
|
|
self.model = DataParallel(model) if self.parallel else model
|
|
self.model_core = model
|
|
self.optimizer = optimizer
|
|
|
|
def setup_dataloader(self):
|
|
config = self.config
|
|
train_dataset = MultiSpeakerMelDataset(self.args.data)
|
|
sampler = MultiSpeakerSampler(train_dataset,
|
|
config.training.speakers_per_batch,
|
|
config.training.utterances_per_speaker)
|
|
train_loader = DataLoader(
|
|
train_dataset,
|
|
batch_sampler=sampler,
|
|
collate_fn=Collate(config.data.partial_n_frames),
|
|
num_workers=16)
|
|
|
|
self.train_dataset = train_dataset
|
|
self.train_loader = train_loader
|
|
|
|
def train_batch(self):
|
|
start = time.time()
|
|
batch = self.read_batch()
|
|
data_loader_time = time.time() - start
|
|
|
|
self.optimizer.clear_grad()
|
|
self.model.train()
|
|
specs = batch
|
|
loss, eer = self.model(specs, self.config.training.speakers_per_batch)
|
|
loss.backward()
|
|
self.model_core.do_gradient_ops()
|
|
self.optimizer.step()
|
|
iteration_time = time.time() - start
|
|
|
|
# logging
|
|
loss_value = float(loss)
|
|
msg = "Rank: {}, ".format(dist.get_rank())
|
|
msg += "step: {}, ".format(self.iteration)
|
|
msg += "time: {:>.3f}s/{:>.3f}s, ".format(data_loader_time,
|
|
iteration_time)
|
|
msg += 'loss: {:>.6f} err: {:>.6f}'.format(loss_value, eer)
|
|
self.logger.info(msg)
|
|
|
|
if dist.get_rank() == 0:
|
|
self.visualizer.add_scalar("train/loss", loss_value, self.iteration)
|
|
self.visualizer.add_scalar("train/eer", eer, self.iteration)
|
|
self.visualizer.add_scalar("param/w",
|
|
float(self.model_core.similarity_weight),
|
|
self.iteration)
|
|
self.visualizer.add_scalar("param/b",
|
|
float(self.model_core.similarity_bias),
|
|
self.iteration)
|
|
|
|
def valid(self):
|
|
pass
|
|
|
|
|
|
def main_sp(config, args):
|
|
exp = Ge2eExperiment(config, args)
|
|
exp.setup()
|
|
exp.resume_or_load()
|
|
exp.run()
|
|
|
|
|
|
def main(config, args):
|
|
if args.nprocs > 1 and args.device == "gpu":
|
|
dist.spawn(main_sp, args=(config, args), nprocs=args.nprocs)
|
|
else:
|
|
main_sp(config, args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
config = get_cfg_defaults()
|
|
parser = default_argument_parser()
|
|
args = parser.parse_args()
|
|
if args.config:
|
|
config.merge_from_file(args.config)
|
|
if args.opts:
|
|
config.merge_from_list(args.opts)
|
|
config.freeze()
|
|
print(config)
|
|
print(args)
|
|
|
|
main(config, args)
|