You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/modules/style_encoder.py

299 lines
11 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
"""Style encoder of GST-Tacotron."""
from typing import Sequence
import paddle
from paddle import nn
from typeguard import check_argument_types
from paddlespeech.t2s.modules.transformer.attention import MultiHeadedAttention as BaseMultiHeadedAttention
class StyleEncoder(nn.Layer):
"""Style encoder.
This module is style encoder introduced in `Style Tokens: Unsupervised Style
Modeling, Control and Transfer in End-to-End Speech Synthesis`.
.. _`Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End
Speech Synthesis`: https://arxiv.org/abs/1803.09017
Args:
idim (int, optional):
Dimension of the input mel-spectrogram.
gst_tokens (int, optional):
The number of GST embeddings.
gst_token_dim (int, optional):
Dimension of each GST embedding.
gst_heads (int, optional):
The number of heads in GST multihead attention.
conv_layers (int, optional):
The number of conv layers in the reference encoder.
conv_chans_list (Sequence[int], optional):
List of the number of channels of conv layers in the referece encoder.
conv_kernel_size (int, optional):
Kernal size of conv layers in the reference encoder.
conv_stride (int, optional):
Stride size of conv layers in the reference encoder.
gru_layers (int, optional):
The number of GRU layers in the reference encoder.
gru_units (int, optional):
The number of GRU units in the reference encoder.
Todo:
* Support manual weight specification in inference.
"""
def __init__(
self,
idim: int=80,
gst_tokens: int=10,
gst_token_dim: int=256,
gst_heads: int=4,
conv_layers: int=6,
conv_chans_list: Sequence[int]=(32, 32, 64, 64, 128, 128),
conv_kernel_size: int=3,
conv_stride: int=2,
gru_layers: int=1,
gru_units: int=128, ):
"""Initilize global style encoder module."""
assert check_argument_types()
super().__init__()
self.ref_enc = ReferenceEncoder(
idim=idim,
conv_layers=conv_layers,
conv_chans_list=conv_chans_list,
conv_kernel_size=conv_kernel_size,
conv_stride=conv_stride,
gru_layers=gru_layers,
gru_units=gru_units, )
self.stl = StyleTokenLayer(
ref_embed_dim=gru_units,
gst_tokens=gst_tokens,
gst_token_dim=gst_token_dim,
gst_heads=gst_heads, )
def forward(self, speech: paddle.Tensor) -> paddle.Tensor:
"""Calculate forward propagation.
Args:
speech (Tensor):
Batch of padded target features (B, Lmax, odim).
Returns:
Tensor: Style token embeddings (B, token_dim).
"""
ref_embs = self.ref_enc(speech)
style_embs = self.stl(ref_embs)
return style_embs
class ReferenceEncoder(nn.Layer):
"""Reference encoder module.
This module is refernece encoder introduced in `Style Tokens: Unsupervised Style
Modeling, Control and Transfer in End-to-End Speech Synthesis`.
.. _`Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End
Speech Synthesis`: https://arxiv.org/abs/1803.09017
Args:
idim (int, optional):
Dimension of the input mel-spectrogram.
conv_layers (int, optional):
The number of conv layers in the reference encoder.
conv_chans_list: (Sequence[int], optional):
List of the number of channels of conv layers in the referece encoder.
conv_kernel_size (int, optional):
Kernal size of conv layers in the reference encoder.
conv_stride (int, optional):
Stride size of conv layers in the reference encoder.
gru_layers (int, optional):
The number of GRU layers in the reference encoder.
gru_units (int, optional):
The number of GRU units in the reference encoder.
"""
def __init__(
self,
idim=80,
conv_layers: int=6,
conv_chans_list: Sequence[int]=(32, 32, 64, 64, 128, 128),
conv_kernel_size: int=3,
conv_stride: int=2,
gru_layers: int=1,
gru_units: int=128, ):
"""Initilize reference encoder module."""
assert check_argument_types()
super().__init__()
# check hyperparameters are valid
assert conv_kernel_size % 2 == 1, "kernel size must be odd."
assert (
len(conv_chans_list) == conv_layers
), "the number of conv layers and length of channels list must be the same."
convs = []
padding = (conv_kernel_size - 1) // 2
for i in range(conv_layers):
conv_in_chans = 1 if i == 0 else conv_chans_list[i - 1]
conv_out_chans = conv_chans_list[i]
convs += [
nn.Conv2D(
conv_in_chans,
conv_out_chans,
kernel_size=conv_kernel_size,
stride=conv_stride,
padding=padding,
# Do not use bias due to the following batch norm
bias_attr=False, ),
nn.BatchNorm2D(conv_out_chans),
nn.ReLU(),
]
self.convs = nn.Sequential(*convs)
self.conv_layers = conv_layers
self.kernel_size = conv_kernel_size
self.stride = conv_stride
self.padding = padding
# get the number of GRU input units
gru_in_units = idim
for i in range(conv_layers):
gru_in_units = (gru_in_units - conv_kernel_size + 2 * padding
) // conv_stride + 1
gru_in_units *= conv_out_chans
self.gru = nn.GRU(gru_in_units, gru_units, gru_layers, time_major=False)
def forward(self, speech: paddle.Tensor) -> paddle.Tensor:
"""Calculate forward propagation.
Args:
speech (Tensor):
Batch of padded target features (B, Lmax, idim).
Returns:
Tensor: Reference embedding (B, gru_units)
"""
batch_size = speech.shape[0]
# (B, 1, Lmax, idim)
xs = speech.unsqueeze(1)
# (B, Lmax', conv_out_chans, idim')
hs = self.convs(xs).transpose([0, 2, 1, 3])
time_length = hs.shape[1]
# (B, Lmax', gru_units)
hs = hs.reshape(shape=[batch_size, time_length, -1])
self.gru.flatten_parameters()
# (gru_layers, batch_size, gru_units)
_, ref_embs = self.gru(hs)
# (batch_size, gru_units)
ref_embs = ref_embs[-1]
return ref_embs
class StyleTokenLayer(nn.Layer):
"""Style token layer module.
This module is style token layer introduced in `Style Tokens: Unsupervised Style
Modeling, Control and Transfer in End-to-End Speech Synthesis`.
.. _`Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End
Speech Synthesis`: https://arxiv.org/abs/1803.09017
Args:
ref_embed_dim (int, optional):
Dimension of the input reference embedding.
gst_tokens (int, optional):
The number of GST embeddings.
gst_token_dim (int, optional):
Dimension of each GST embedding.
gst_heads (int, optional):
The number of heads in GST multihead attention.
dropout_rate (float, optional):
Dropout rate in multi-head attention.
"""
def __init__(
self,
ref_embed_dim: int=128,
gst_tokens: int=10,
gst_token_dim: int=256,
gst_heads: int=4,
dropout_rate: float=0.0, ):
"""Initilize style token layer module."""
assert check_argument_types()
super().__init__()
gst_embs = paddle.randn(shape=[gst_tokens, gst_token_dim // gst_heads])
self.gst_embs = paddle.create_parameter(
shape=gst_embs.shape,
dtype=str(gst_embs.numpy().dtype),
default_initializer=paddle.nn.initializer.Assign(gst_embs))
self.mha = MultiHeadedAttention(
q_dim=ref_embed_dim,
k_dim=gst_token_dim // gst_heads,
v_dim=gst_token_dim // gst_heads,
n_head=gst_heads,
n_feat=gst_token_dim,
dropout_rate=dropout_rate, )
def forward(self, ref_embs: paddle.Tensor) -> paddle.Tensor:
"""Calculate forward propagation.
Args:
ref_embs (Tensor):
Reference embeddings (B, ref_embed_dim).
Returns:
Tensor: Style token embeddings (B, gst_token_dim).
"""
batch_size = ref_embs.shape[0]
# (num_tokens, token_dim) -> (batch_size, num_tokens, token_dim)
gst_embs = paddle.tanh(self.gst_embs).unsqueeze(0).expand(
[batch_size, -1, -1])
# (batch_size, 1 ,ref_embed_dim)
ref_embs = ref_embs.unsqueeze(1)
style_embs = self.mha(ref_embs, gst_embs, gst_embs, None)
return style_embs.squeeze(1)
class MultiHeadedAttention(BaseMultiHeadedAttention):
"""Multi head attention module with different input dimension."""
def __init__(self, q_dim, k_dim, v_dim, n_head, n_feat, dropout_rate=0.0):
"""Initialize multi head attention module."""
# Do not use super().__init__() here since we want to
# overwrite BaseMultiHeadedAttention.__init__() method.
nn.Layer.__init__(self)
assert n_feat % n_head == 0
# We assume d_v always equals d_k
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = nn.Linear(q_dim, n_feat)
self.linear_k = nn.Linear(k_dim, n_feat)
self.linear_v = nn.Linear(v_dim, n_feat)
self.linear_out = nn.Linear(n_feat, n_feat)
self.attn = None
self.dropout = nn.Dropout(p=dropout_rate)