You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
247 lines
8.0 KiB
247 lines
8.0 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
from pathlib import Path
|
|
|
|
import numpy
|
|
import soundfile as sf
|
|
from paddle import inference
|
|
from timer import timer
|
|
|
|
from paddlespeech.t2s.exps.syn_utils import get_frontend
|
|
from paddlespeech.t2s.exps.syn_utils import get_sentences
|
|
from paddlespeech.t2s.utils import str2bool
|
|
|
|
|
|
def get_predictor(args, filed='am'):
|
|
full_name = ''
|
|
if filed == 'am':
|
|
full_name = args.am
|
|
elif filed == 'voc':
|
|
full_name = args.voc
|
|
model_name = full_name[:full_name.rindex('_')]
|
|
config = inference.Config(
|
|
str(Path(args.inference_dir) / (full_name + ".pdmodel")),
|
|
str(Path(args.inference_dir) / (full_name + ".pdiparams")))
|
|
if args.device == "gpu":
|
|
config.enable_use_gpu(100, 0)
|
|
elif args.device == "cpu":
|
|
config.disable_gpu()
|
|
# This line must be commented for fastspeech2, if not, it will OOM
|
|
if model_name != 'fastspeech2':
|
|
config.enable_memory_optim()
|
|
predictor = inference.create_predictor(config)
|
|
return predictor
|
|
|
|
|
|
def get_am_output(args, am_predictor, frontend, merge_sentences, input):
|
|
am_name = args.am[:args.am.rindex('_')]
|
|
am_dataset = args.am[args.am.rindex('_') + 1:]
|
|
am_input_names = am_predictor.get_input_names()
|
|
get_tone_ids = False
|
|
get_spk_id = False
|
|
if am_name == 'speedyspeech':
|
|
get_tone_ids = True
|
|
if am_dataset in {"aishell3", "vctk"} and args.speaker_dict:
|
|
get_spk_id = True
|
|
spk_id = numpy.array([args.spk_id])
|
|
if args.lang == 'zh':
|
|
input_ids = frontend.get_input_ids(
|
|
input, merge_sentences=merge_sentences, get_tone_ids=get_tone_ids)
|
|
phone_ids = input_ids["phone_ids"]
|
|
elif args.lang == 'en':
|
|
input_ids = frontend.get_input_ids(
|
|
input, merge_sentences=merge_sentences)
|
|
phone_ids = input_ids["phone_ids"]
|
|
else:
|
|
print("lang should in {'zh', 'en'}!")
|
|
|
|
if get_tone_ids:
|
|
tone_ids = input_ids["tone_ids"]
|
|
tones = tone_ids[0].numpy()
|
|
tones_handle = am_predictor.get_input_handle(am_input_names[1])
|
|
tones_handle.reshape(tones.shape)
|
|
tones_handle.copy_from_cpu(tones)
|
|
if get_spk_id:
|
|
spk_id_handle = am_predictor.get_input_handle(am_input_names[1])
|
|
spk_id_handle.reshape(spk_id.shape)
|
|
spk_id_handle.copy_from_cpu(spk_id)
|
|
phones = phone_ids[0].numpy()
|
|
phones_handle = am_predictor.get_input_handle(am_input_names[0])
|
|
phones_handle.reshape(phones.shape)
|
|
phones_handle.copy_from_cpu(phones)
|
|
|
|
am_predictor.run()
|
|
am_output_names = am_predictor.get_output_names()
|
|
am_output_handle = am_predictor.get_output_handle(am_output_names[0])
|
|
am_output_data = am_output_handle.copy_to_cpu()
|
|
return am_output_data
|
|
|
|
|
|
def get_voc_output(args, voc_predictor, input):
|
|
voc_input_names = voc_predictor.get_input_names()
|
|
mel_handle = voc_predictor.get_input_handle(voc_input_names[0])
|
|
mel_handle.reshape(input.shape)
|
|
mel_handle.copy_from_cpu(input)
|
|
|
|
voc_predictor.run()
|
|
voc_output_names = voc_predictor.get_output_names()
|
|
voc_output_handle = voc_predictor.get_output_handle(voc_output_names[0])
|
|
wav = voc_output_handle.copy_to_cpu()
|
|
return wav
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(
|
|
description="Paddle Infernce with acoustic model & vocoder.")
|
|
# acoustic model
|
|
parser.add_argument(
|
|
'--am',
|
|
type=str,
|
|
default='fastspeech2_csmsc',
|
|
choices=[
|
|
'speedyspeech_csmsc', 'fastspeech2_csmsc', 'fastspeech2_aishell3',
|
|
'fastspeech2_vctk', 'tacotron2_csmsc'
|
|
],
|
|
help='Choose acoustic model type of tts task.')
|
|
parser.add_argument(
|
|
"--phones_dict", type=str, default=None, help="phone vocabulary file.")
|
|
parser.add_argument(
|
|
"--tones_dict", type=str, default=None, help="tone vocabulary file.")
|
|
parser.add_argument(
|
|
"--speaker_dict", type=str, default=None, help="speaker id map file.")
|
|
parser.add_argument(
|
|
'--spk_id',
|
|
type=int,
|
|
default=0,
|
|
help='spk id for multi speaker acoustic model')
|
|
# voc
|
|
parser.add_argument(
|
|
'--voc',
|
|
type=str,
|
|
default='pwgan_csmsc',
|
|
choices=[
|
|
'pwgan_csmsc', 'mb_melgan_csmsc', 'hifigan_csmsc', 'pwgan_aishell3',
|
|
'pwgan_vctk', 'wavernn_csmsc'
|
|
],
|
|
help='Choose vocoder type of tts task.')
|
|
# other
|
|
parser.add_argument(
|
|
'--lang',
|
|
type=str,
|
|
default='zh',
|
|
help='Choose model language. zh or en')
|
|
parser.add_argument(
|
|
"--text",
|
|
type=str,
|
|
help="text to synthesize, a 'utt_id sentence' pair per line")
|
|
parser.add_argument(
|
|
"--inference_dir", type=str, help="dir to save inference models")
|
|
parser.add_argument("--output_dir", type=str, help="output dir")
|
|
# inference
|
|
parser.add_argument(
|
|
"--use_trt",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Whether to use inference engin TensorRT.", )
|
|
parser.add_argument(
|
|
"--int8",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Whether to use int8 inference.", )
|
|
parser.add_argument(
|
|
"--fp16",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Whether to use float16 inference.", )
|
|
parser.add_argument(
|
|
"--device",
|
|
default="gpu",
|
|
choices=["gpu", "cpu"],
|
|
help="Device selected for inference.", )
|
|
|
|
args, _ = parser.parse_known_args()
|
|
return args
|
|
|
|
|
|
# only inference for models trained with csmsc now
|
|
def main():
|
|
args = parse_args()
|
|
# frontend
|
|
frontend = get_frontend(args)
|
|
|
|
# am_predictor
|
|
am_predictor = get_predictor(args, filed='am')
|
|
# model: {model_name}_{dataset}
|
|
am_dataset = args.am[args.am.rindex('_') + 1:]
|
|
|
|
# voc_predictor
|
|
voc_predictor = get_predictor(args, filed='voc')
|
|
|
|
output_dir = Path(args.output_dir)
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
sentences = get_sentences(args)
|
|
|
|
merge_sentences = True
|
|
fs = 24000 if am_dataset != 'ljspeech' else 22050
|
|
# warmup
|
|
for utt_id, sentence in sentences[:3]:
|
|
with timer() as t:
|
|
am_output_data = get_am_output(
|
|
args,
|
|
am_predictor=am_predictor,
|
|
frontend=frontend,
|
|
merge_sentences=merge_sentences,
|
|
input=sentence)
|
|
wav = get_voc_output(
|
|
args, voc_predictor=voc_predictor, input=am_output_data)
|
|
speed = wav.size / t.elapse
|
|
rtf = fs / speed
|
|
print(
|
|
f"{utt_id}, mel: {am_output_data.shape}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
|
|
)
|
|
|
|
print("warm up done!")
|
|
|
|
N = 0
|
|
T = 0
|
|
for utt_id, sentence in sentences:
|
|
with timer() as t:
|
|
am_output_data = get_am_output(
|
|
args,
|
|
am_predictor=am_predictor,
|
|
frontend=frontend,
|
|
merge_sentences=merge_sentences,
|
|
input=sentence)
|
|
wav = get_voc_output(
|
|
args, voc_predictor=voc_predictor, input=am_output_data)
|
|
|
|
N += wav.size
|
|
T += t.elapse
|
|
speed = wav.size / t.elapse
|
|
rtf = fs / speed
|
|
|
|
sf.write(output_dir / (utt_id + ".wav"), wav, samplerate=24000)
|
|
print(
|
|
f"{utt_id}, mel: {am_output_data.shape}, wave: {wav.shape}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
|
|
)
|
|
|
|
print(f"{utt_id} done!")
|
|
print(f"generation speed: {N / T}Hz, RTF: {fs / (N / T) }")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|