xiongxinlei
07c0d7d7cc
|
2 years ago | |
---|---|---|
.. | ||
conf | ||
README.md | 2 years ago | |
README_cn.md | 2 years ago | |
acs_clinet.py | ||
requirements.txt | ||
run.sh | ||
streaming_asr_server.py |
README.md
(简体中文|English)
ACS (Audio Content Search)
Introduction
ACS, or Audio Content Search, refers to the problem of getting the key word time stamp from automatically transcribe spoken language (speech-to-text).
This demo is an implementation of obtaining the keyword timestamp in the text from a given audio file. It can be done by a single command or a few lines in python using PaddleSpeech
.
Now, the search word in demo is:
我
康
Usage
1. Installation
see installation.
You can choose one way from meduim and hard to install paddlespeech.
The dependency refers to the requirements.txt, and install the dependency as follows:
pip install -r requriement.txt
2. Prepare Input File
The input of this demo should be a WAV file(.wav
), and the sample rate must be the same as the model.
Here are sample files for this demo that can be downloaded:
wget -c https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav
3. Usage
-
Command Line(Recommended)
# Chinese paddlespeech_client acs --server_ip 127.0.0.1 --port 8090 --input ./zh.wav
Usage:
paddlespeech asr --help
Arguments:
input
(required): Audio file to recognize.server_ip
: the server ip.port
: the server port.lang
: the language type of the model. Default:zh
.sample_rate
: Sample rate of the model. Default:16000
.audio_format
: The audio format.
Output:
[2022-05-15 15:00:58,185] [ INFO] - acs http client start [2022-05-15 15:00:58,185] [ INFO] - endpoint: http://127.0.0.1:8490/paddlespeech/asr/search [2022-05-15 15:01:03,220] [ INFO] - acs http client finished [2022-05-15 15:01:03,221] [ INFO] - ACS result: {'transcription': '我认为跑步最重要的就是给我带来了身体健康', 'acs': [{'w': '我', 'bg': 0, 'ed': 1.6800000000000002}, {'w': '我', 'bg': 2.1, 'ed': 4.28}, {'w': '康', 'bg': 3.2, 'ed': 4.92}]} [2022-05-15 15:01:03,221] [ INFO] - Response time 5.036084 s.
-
Python API
from paddlespeech.server.bin.paddlespeech_client import ACSClientExecutor acs_executor = ACSClientExecutor() res = acs_executor( input='./zh.wav', server_ip="127.0.0.1", port=8490,) print(res)
Output:
[2022-05-15 15:08:13,955] [ INFO] - acs http client start [2022-05-15 15:08:13,956] [ INFO] - endpoint: http://127.0.0.1:8490/paddlespeech/asr/search [2022-05-15 15:08:19,026] [ INFO] - acs http client finished {'transcription': '我认为跑步最重要的就是给我带来了身体健康', 'acs': [{'w': '我', 'bg': 0, 'ed': 1.6800000000000002}, {'w': '我', 'bg': 2.1, 'ed': 4.28}, {'w': '康', 'bg': 3.2, 'ed': 4.92}]}