You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
672 lines
22 KiB
672 lines
22 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Collection
|
|
from typing import Dict
|
|
from typing import List
|
|
from typing import Tuple
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
from paddlespeech.t2s.datasets.batch import batch_sequences
|
|
from paddlespeech.t2s.datasets.get_feats import LogMelFBank
|
|
from paddlespeech.t2s.modules.nets_utils import get_seg_pos
|
|
from paddlespeech.t2s.modules.nets_utils import make_non_pad_mask
|
|
from paddlespeech.t2s.modules.nets_utils import pad_list
|
|
from paddlespeech.t2s.modules.nets_utils import phones_masking
|
|
from paddlespeech.t2s.modules.nets_utils import phones_text_masking
|
|
|
|
|
|
# 因为要传参数,所以需要额外构建
|
|
def build_erniesat_collate_fn(mlm_prob: float=0.8,
|
|
mean_phn_span: int=8,
|
|
seg_emb: bool=False,
|
|
text_masking: bool=False):
|
|
|
|
return ErnieSATCollateFn(
|
|
mlm_prob=mlm_prob,
|
|
mean_phn_span=mean_phn_span,
|
|
seg_emb=seg_emb,
|
|
text_masking=text_masking)
|
|
|
|
|
|
class ErnieSATCollateFn:
|
|
"""Functor class of common_collate_fn()"""
|
|
|
|
def __init__(self,
|
|
mlm_prob: float=0.8,
|
|
mean_phn_span: int=8,
|
|
seg_emb: bool=False,
|
|
text_masking: bool=False):
|
|
self.mlm_prob = mlm_prob
|
|
self.mean_phn_span = mean_phn_span
|
|
self.seg_emb = seg_emb
|
|
self.text_masking = text_masking
|
|
|
|
def __call__(self, exmaples):
|
|
return erniesat_batch_fn(
|
|
exmaples,
|
|
mlm_prob=self.mlm_prob,
|
|
mean_phn_span=self.mean_phn_span,
|
|
seg_emb=self.seg_emb,
|
|
text_masking=self.text_masking)
|
|
|
|
|
|
def erniesat_batch_fn(examples,
|
|
mlm_prob: float=0.8,
|
|
mean_phn_span: int=8,
|
|
seg_emb: bool=False,
|
|
text_masking: bool=False):
|
|
# fields = ["text", "text_lengths", "speech", "speech_lengths", "align_start", "align_end"]
|
|
text = [np.array(item["text"], dtype=np.int64) for item in examples]
|
|
speech = [np.array(item["speech"], dtype=np.float32) for item in examples]
|
|
|
|
text_lengths = [
|
|
np.array(item["text_lengths"], dtype=np.int64) for item in examples
|
|
]
|
|
speech_lengths = [
|
|
np.array(item["speech_lengths"], dtype=np.int64) for item in examples
|
|
]
|
|
|
|
align_start = [
|
|
np.array(item["align_start"], dtype=np.int64) for item in examples
|
|
]
|
|
|
|
align_end = [
|
|
np.array(item["align_end"], dtype=np.int64) for item in examples
|
|
]
|
|
|
|
align_start_lengths = [
|
|
np.array(len(item["align_start"]), dtype=np.int64) for item in examples
|
|
]
|
|
|
|
# add_pad
|
|
text = batch_sequences(text)
|
|
speech = batch_sequences(speech)
|
|
align_start = batch_sequences(align_start)
|
|
align_end = batch_sequences(align_end)
|
|
|
|
# convert each batch to paddle.Tensor
|
|
text = paddle.to_tensor(text)
|
|
speech = paddle.to_tensor(speech)
|
|
text_lengths = paddle.to_tensor(text_lengths)
|
|
speech_lengths = paddle.to_tensor(speech_lengths)
|
|
align_start_lengths = paddle.to_tensor(align_start_lengths)
|
|
|
|
speech_pad = speech
|
|
text_pad = text
|
|
|
|
text_mask = make_non_pad_mask(
|
|
text_lengths, text_pad, length_dim=1).unsqueeze(-2)
|
|
speech_mask = make_non_pad_mask(
|
|
speech_lengths, speech_pad[:, :, 0], length_dim=1).unsqueeze(-2)
|
|
|
|
# for training
|
|
span_bdy = None
|
|
# for inference
|
|
if 'span_bdy' in examples[0].keys():
|
|
span_bdy = [
|
|
np.array(item["span_bdy"], dtype=np.int64) for item in examples
|
|
]
|
|
span_bdy = paddle.to_tensor(span_bdy)
|
|
|
|
# dual_mask 的是混合中英时候同时 mask 语音和文本
|
|
# ernie sat 在实现跨语言的时候都 mask 了
|
|
if text_masking:
|
|
masked_pos, text_masked_pos = phones_text_masking(
|
|
xs_pad=speech_pad,
|
|
src_mask=speech_mask,
|
|
text_pad=text_pad,
|
|
text_mask=text_mask,
|
|
align_start=align_start,
|
|
align_end=align_end,
|
|
align_start_lens=align_start_lengths,
|
|
mlm_prob=mlm_prob,
|
|
mean_phn_span=mean_phn_span,
|
|
span_bdy=span_bdy)
|
|
# 训练纯中文和纯英文的 -> a3t 没有对 phoneme 做 mask, 只对语音 mask 了
|
|
# a3t 和 ernie sat 的区别主要在于做 mask 的时候
|
|
else:
|
|
masked_pos = phones_masking(
|
|
xs_pad=speech_pad,
|
|
src_mask=speech_mask,
|
|
align_start=align_start,
|
|
align_end=align_end,
|
|
align_start_lens=align_start_lengths,
|
|
mlm_prob=mlm_prob,
|
|
mean_phn_span=mean_phn_span,
|
|
span_bdy=span_bdy)
|
|
text_masked_pos = paddle.zeros(paddle.shape(text_pad))
|
|
|
|
speech_seg_pos, text_seg_pos = get_seg_pos(
|
|
speech_pad=speech_pad,
|
|
text_pad=text_pad,
|
|
align_start=align_start,
|
|
align_end=align_end,
|
|
align_start_lens=align_start_lengths,
|
|
seg_emb=seg_emb)
|
|
|
|
batch = {
|
|
"text": text,
|
|
"speech": speech,
|
|
# need to generate
|
|
"masked_pos": masked_pos,
|
|
"speech_mask": speech_mask,
|
|
"text_mask": text_mask,
|
|
"speech_seg_pos": speech_seg_pos,
|
|
"text_seg_pos": text_seg_pos,
|
|
"text_masked_pos": text_masked_pos
|
|
}
|
|
|
|
return batch
|
|
|
|
|
|
def tacotron2_single_spk_batch_fn(examples):
|
|
# fields = ["text", "text_lengths", "speech", "speech_lengths"]
|
|
text = [np.array(item["text"], dtype=np.int64) for item in examples]
|
|
speech = [np.array(item["speech"], dtype=np.float32) for item in examples]
|
|
text_lengths = [
|
|
np.array(item["text_lengths"], dtype=np.int64) for item in examples
|
|
]
|
|
speech_lengths = [
|
|
np.array(item["speech_lengths"], dtype=np.int64) for item in examples
|
|
]
|
|
|
|
text = batch_sequences(text)
|
|
speech = batch_sequences(speech)
|
|
|
|
# convert each batch to paddle.Tensor
|
|
text = paddle.to_tensor(text)
|
|
speech = paddle.to_tensor(speech)
|
|
text_lengths = paddle.to_tensor(text_lengths)
|
|
speech_lengths = paddle.to_tensor(speech_lengths)
|
|
|
|
batch = {
|
|
"text": text,
|
|
"text_lengths": text_lengths,
|
|
"speech": speech,
|
|
"speech_lengths": speech_lengths,
|
|
}
|
|
return batch
|
|
|
|
|
|
def tacotron2_multi_spk_batch_fn(examples):
|
|
# fields = ["text", "text_lengths", "speech", "speech_lengths"]
|
|
text = [np.array(item["text"], dtype=np.int64) for item in examples]
|
|
speech = [np.array(item["speech"], dtype=np.float32) for item in examples]
|
|
text_lengths = [
|
|
np.array(item["text_lengths"], dtype=np.int64) for item in examples
|
|
]
|
|
speech_lengths = [
|
|
np.array(item["speech_lengths"], dtype=np.int64) for item in examples
|
|
]
|
|
|
|
text = batch_sequences(text)
|
|
speech = batch_sequences(speech)
|
|
|
|
# convert each batch to paddle.Tensor
|
|
text = paddle.to_tensor(text)
|
|
speech = paddle.to_tensor(speech)
|
|
text_lengths = paddle.to_tensor(text_lengths)
|
|
speech_lengths = paddle.to_tensor(speech_lengths)
|
|
|
|
batch = {
|
|
"text": text,
|
|
"text_lengths": text_lengths,
|
|
"speech": speech,
|
|
"speech_lengths": speech_lengths,
|
|
}
|
|
# spk_emb has a higher priority than spk_id
|
|
if "spk_emb" in examples[0]:
|
|
spk_emb = [
|
|
np.array(item["spk_emb"], dtype=np.float32) for item in examples
|
|
]
|
|
spk_emb = batch_sequences(spk_emb)
|
|
spk_emb = paddle.to_tensor(spk_emb)
|
|
batch["spk_emb"] = spk_emb
|
|
elif "spk_id" in examples[0]:
|
|
spk_id = [np.array(item["spk_id"], dtype=np.int64) for item in examples]
|
|
spk_id = paddle.to_tensor(spk_id)
|
|
batch["spk_id"] = spk_id
|
|
return batch
|
|
|
|
|
|
def speedyspeech_single_spk_batch_fn(examples):
|
|
# fields = ["phones", "tones", "num_phones", "num_frames", "feats", "durations"]
|
|
phones = [np.array(item["phones"], dtype=np.int64) for item in examples]
|
|
tones = [np.array(item["tones"], dtype=np.int64) for item in examples]
|
|
feats = [np.array(item["feats"], dtype=np.float32) for item in examples]
|
|
durations = [
|
|
np.array(item["durations"], dtype=np.int64) for item in examples
|
|
]
|
|
num_phones = [
|
|
np.array(item["num_phones"], dtype=np.int64) for item in examples
|
|
]
|
|
num_frames = [
|
|
np.array(item["num_frames"], dtype=np.int64) for item in examples
|
|
]
|
|
|
|
phones = batch_sequences(phones)
|
|
tones = batch_sequences(tones)
|
|
feats = batch_sequences(feats)
|
|
durations = batch_sequences(durations)
|
|
|
|
# convert each batch to paddle.Tensor
|
|
phones = paddle.to_tensor(phones)
|
|
tones = paddle.to_tensor(tones)
|
|
feats = paddle.to_tensor(feats)
|
|
durations = paddle.to_tensor(durations)
|
|
num_phones = paddle.to_tensor(num_phones)
|
|
num_frames = paddle.to_tensor(num_frames)
|
|
batch = {
|
|
"phones": phones,
|
|
"tones": tones,
|
|
"num_phones": num_phones,
|
|
"num_frames": num_frames,
|
|
"feats": feats,
|
|
"durations": durations,
|
|
}
|
|
return batch
|
|
|
|
|
|
def speedyspeech_multi_spk_batch_fn(examples):
|
|
# fields = ["phones", "tones", "num_phones", "num_frames", "feats", "durations", "spk_id"]
|
|
phones = [np.array(item["phones"], dtype=np.int64) for item in examples]
|
|
tones = [np.array(item["tones"], dtype=np.int64) for item in examples]
|
|
feats = [np.array(item["feats"], dtype=np.float32) for item in examples]
|
|
durations = [
|
|
np.array(item["durations"], dtype=np.int64) for item in examples
|
|
]
|
|
num_phones = [
|
|
np.array(item["num_phones"], dtype=np.int64) for item in examples
|
|
]
|
|
num_frames = [
|
|
np.array(item["num_frames"], dtype=np.int64) for item in examples
|
|
]
|
|
|
|
phones = batch_sequences(phones)
|
|
tones = batch_sequences(tones)
|
|
feats = batch_sequences(feats)
|
|
durations = batch_sequences(durations)
|
|
|
|
# convert each batch to paddle.Tensor
|
|
phones = paddle.to_tensor(phones)
|
|
tones = paddle.to_tensor(tones)
|
|
feats = paddle.to_tensor(feats)
|
|
durations = paddle.to_tensor(durations)
|
|
num_phones = paddle.to_tensor(num_phones)
|
|
num_frames = paddle.to_tensor(num_frames)
|
|
batch = {
|
|
"phones": phones,
|
|
"tones": tones,
|
|
"num_phones": num_phones,
|
|
"num_frames": num_frames,
|
|
"feats": feats,
|
|
"durations": durations,
|
|
}
|
|
if "spk_id" in examples[0]:
|
|
spk_id = [np.array(item["spk_id"], dtype=np.int64) for item in examples]
|
|
spk_id = paddle.to_tensor(spk_id)
|
|
batch["spk_id"] = spk_id
|
|
return batch
|
|
|
|
|
|
def fastspeech2_single_spk_batch_fn(examples):
|
|
# fields = ["text", "text_lengths", "speech", "speech_lengths", "durations", "pitch", "energy"]
|
|
text = [np.array(item["text"], dtype=np.int64) for item in examples]
|
|
speech = [np.array(item["speech"], dtype=np.float32) for item in examples]
|
|
pitch = [np.array(item["pitch"], dtype=np.float32) for item in examples]
|
|
energy = [np.array(item["energy"], dtype=np.float32) for item in examples]
|
|
durations = [
|
|
np.array(item["durations"], dtype=np.int64) for item in examples
|
|
]
|
|
|
|
text_lengths = [
|
|
np.array(item["text_lengths"], dtype=np.int64) for item in examples
|
|
]
|
|
speech_lengths = [
|
|
np.array(item["speech_lengths"], dtype=np.int64) for item in examples
|
|
]
|
|
|
|
text = batch_sequences(text)
|
|
pitch = batch_sequences(pitch)
|
|
speech = batch_sequences(speech)
|
|
durations = batch_sequences(durations)
|
|
energy = batch_sequences(energy)
|
|
|
|
# convert each batch to paddle.Tensor
|
|
text = paddle.to_tensor(text)
|
|
pitch = paddle.to_tensor(pitch)
|
|
speech = paddle.to_tensor(speech)
|
|
durations = paddle.to_tensor(durations)
|
|
energy = paddle.to_tensor(energy)
|
|
text_lengths = paddle.to_tensor(text_lengths)
|
|
speech_lengths = paddle.to_tensor(speech_lengths)
|
|
|
|
batch = {
|
|
"text": text,
|
|
"text_lengths": text_lengths,
|
|
"durations": durations,
|
|
"speech": speech,
|
|
"speech_lengths": speech_lengths,
|
|
"pitch": pitch,
|
|
"energy": energy
|
|
}
|
|
return batch
|
|
|
|
|
|
def fastspeech2_multi_spk_batch_fn(examples):
|
|
# fields = ["text", "text_lengths", "speech", "speech_lengths", "durations", "pitch", "energy", "spk_id"/"spk_emb"]
|
|
text = [np.array(item["text"], dtype=np.int64) for item in examples]
|
|
speech = [np.array(item["speech"], dtype=np.float32) for item in examples]
|
|
pitch = [np.array(item["pitch"], dtype=np.float32) for item in examples]
|
|
energy = [np.array(item["energy"], dtype=np.float32) for item in examples]
|
|
durations = [
|
|
np.array(item["durations"], dtype=np.int64) for item in examples
|
|
]
|
|
text_lengths = [
|
|
np.array(item["text_lengths"], dtype=np.int64) for item in examples
|
|
]
|
|
speech_lengths = [
|
|
np.array(item["speech_lengths"], dtype=np.int64) for item in examples
|
|
]
|
|
|
|
text = batch_sequences(text)
|
|
pitch = batch_sequences(pitch)
|
|
speech = batch_sequences(speech)
|
|
durations = batch_sequences(durations)
|
|
energy = batch_sequences(energy)
|
|
|
|
# convert each batch to paddle.Tensor
|
|
text = paddle.to_tensor(text)
|
|
pitch = paddle.to_tensor(pitch)
|
|
speech = paddle.to_tensor(speech)
|
|
durations = paddle.to_tensor(durations)
|
|
energy = paddle.to_tensor(energy)
|
|
text_lengths = paddle.to_tensor(text_lengths)
|
|
speech_lengths = paddle.to_tensor(speech_lengths)
|
|
|
|
batch = {
|
|
"text": text,
|
|
"text_lengths": text_lengths,
|
|
"durations": durations,
|
|
"speech": speech,
|
|
"speech_lengths": speech_lengths,
|
|
"pitch": pitch,
|
|
"energy": energy
|
|
}
|
|
# spk_emb has a higher priority than spk_id
|
|
if "spk_emb" in examples[0]:
|
|
spk_emb = [
|
|
np.array(item["spk_emb"], dtype=np.float32) for item in examples
|
|
]
|
|
spk_emb = batch_sequences(spk_emb)
|
|
spk_emb = paddle.to_tensor(spk_emb)
|
|
batch["spk_emb"] = spk_emb
|
|
elif "spk_id" in examples[0]:
|
|
spk_id = [np.array(item["spk_id"], dtype=np.int64) for item in examples]
|
|
spk_id = paddle.to_tensor(spk_id)
|
|
batch["spk_id"] = spk_id
|
|
return batch
|
|
|
|
|
|
def transformer_single_spk_batch_fn(examples):
|
|
# fields = ["text", "text_lengths", "speech", "speech_lengths"]
|
|
text = [np.array(item["text"], dtype=np.int64) for item in examples]
|
|
speech = [np.array(item["speech"], dtype=np.float32) for item in examples]
|
|
text_lengths = [
|
|
np.array(item["text_lengths"], dtype=np.int64) for item in examples
|
|
]
|
|
speech_lengths = [
|
|
np.array(item["speech_lengths"], dtype=np.int64) for item in examples
|
|
]
|
|
|
|
text = batch_sequences(text)
|
|
speech = batch_sequences(speech)
|
|
|
|
# convert each batch to paddle.Tensor
|
|
text = paddle.to_tensor(text)
|
|
speech = paddle.to_tensor(speech)
|
|
text_lengths = paddle.to_tensor(text_lengths)
|
|
speech_lengths = paddle.to_tensor(speech_lengths)
|
|
|
|
batch = {
|
|
"text": text,
|
|
"text_lengths": text_lengths,
|
|
"speech": speech,
|
|
"speech_lengths": speech_lengths,
|
|
}
|
|
return batch
|
|
|
|
|
|
def vits_single_spk_batch_fn(examples):
|
|
"""
|
|
Returns:
|
|
Dict[str, Any]:
|
|
- text (Tensor): Text index tensor (B, T_text).
|
|
- text_lengths (Tensor): Text length tensor (B,).
|
|
- feats (Tensor): Feature tensor (B, T_feats, aux_channels).
|
|
- feats_lengths (Tensor): Feature length tensor (B,).
|
|
- speech (Tensor): Speech waveform tensor (B, T_wav).
|
|
|
|
"""
|
|
# fields = ["text", "text_lengths", "feats", "feats_lengths", "speech"]
|
|
text = [np.array(item["text"], dtype=np.int64) for item in examples]
|
|
feats = [np.array(item["feats"], dtype=np.float32) for item in examples]
|
|
speech = [np.array(item["wave"], dtype=np.float32) for item in examples]
|
|
text_lengths = [
|
|
np.array(item["text_lengths"], dtype=np.int64) for item in examples
|
|
]
|
|
feats_lengths = [
|
|
np.array(item["feats_lengths"], dtype=np.int64) for item in examples
|
|
]
|
|
|
|
text = batch_sequences(text)
|
|
feats = batch_sequences(feats)
|
|
speech = batch_sequences(speech)
|
|
|
|
# convert each batch to paddle.Tensor
|
|
text = paddle.to_tensor(text)
|
|
feats = paddle.to_tensor(feats)
|
|
text_lengths = paddle.to_tensor(text_lengths)
|
|
feats_lengths = paddle.to_tensor(feats_lengths)
|
|
|
|
batch = {
|
|
"text": text,
|
|
"text_lengths": text_lengths,
|
|
"feats": feats,
|
|
"feats_lengths": feats_lengths,
|
|
"speech": speech
|
|
}
|
|
return batch
|
|
|
|
|
|
# for ERNIE SAT
|
|
class MLMCollateFn:
|
|
"""Functor class of common_collate_fn()"""
|
|
|
|
def __init__(
|
|
self,
|
|
feats_extract,
|
|
mlm_prob: float=0.8,
|
|
mean_phn_span: int=8,
|
|
seg_emb: bool=False,
|
|
text_masking: bool=False,
|
|
attention_window: int=0,
|
|
not_sequence: Collection[str]=(), ):
|
|
self.mlm_prob = mlm_prob
|
|
self.mean_phn_span = mean_phn_span
|
|
self.feats_extract = feats_extract
|
|
self.not_sequence = set(not_sequence)
|
|
self.attention_window = attention_window
|
|
self.seg_emb = seg_emb
|
|
self.text_masking = text_masking
|
|
|
|
def __call__(self, data: Collection[Tuple[str, Dict[str, np.ndarray]]]
|
|
) -> Tuple[List[str], Dict[str, paddle.Tensor]]:
|
|
return mlm_collate_fn(
|
|
data,
|
|
feats_extract=self.feats_extract,
|
|
mlm_prob=self.mlm_prob,
|
|
mean_phn_span=self.mean_phn_span,
|
|
seg_emb=self.seg_emb,
|
|
text_masking=self.text_masking,
|
|
not_sequence=self.not_sequence)
|
|
|
|
|
|
def mlm_collate_fn(
|
|
data: Collection[Tuple[str, Dict[str, np.ndarray]]],
|
|
feats_extract=None,
|
|
mlm_prob: float=0.8,
|
|
mean_phn_span: int=8,
|
|
seg_emb: bool=False,
|
|
text_masking: bool=False,
|
|
pad_value: int=0,
|
|
not_sequence: Collection[str]=(),
|
|
) -> Tuple[List[str], Dict[str, paddle.Tensor]]:
|
|
uttids = [u for u, _ in data]
|
|
data = [d for _, d in data]
|
|
|
|
assert all(set(data[0]) == set(d) for d in data), "dict-keys mismatching"
|
|
assert all(not k.endswith("_lens")
|
|
for k in data[0]), f"*_lens is reserved: {list(data[0])}"
|
|
|
|
output = {}
|
|
for key in data[0]:
|
|
|
|
array_list = [d[key] for d in data]
|
|
|
|
# Assume the first axis is length:
|
|
# tensor_list: Batch x (Length, ...)
|
|
tensor_list = [paddle.to_tensor(a) for a in array_list]
|
|
# tensor: (Batch, Length, ...)
|
|
tensor = pad_list(tensor_list, pad_value)
|
|
output[key] = tensor
|
|
|
|
# lens: (Batch,)
|
|
if key not in not_sequence:
|
|
lens = paddle.to_tensor(
|
|
[d[key].shape[0] for d in data], dtype=paddle.int64)
|
|
output[key + "_lens"] = lens
|
|
|
|
feats = feats_extract.get_log_mel_fbank(np.array(output["speech"][0]))
|
|
feats = paddle.to_tensor(feats)
|
|
print("feats.shape:", feats.shape)
|
|
feats_lens = paddle.shape(feats)[0]
|
|
feats = paddle.unsqueeze(feats, 0)
|
|
|
|
text = output["text"]
|
|
text_lens = output["text_lens"]
|
|
align_start = output["align_start"]
|
|
align_start_lens = output["align_start_lens"]
|
|
align_end = output["align_end"]
|
|
|
|
max_tlen = max(text_lens)
|
|
max_slen = max(feats_lens)
|
|
|
|
speech_pad = feats[:, :max_slen]
|
|
|
|
text_pad = text
|
|
text_mask = make_non_pad_mask(
|
|
text_lens, text_pad, length_dim=1).unsqueeze(-2)
|
|
speech_mask = make_non_pad_mask(
|
|
feats_lens, speech_pad[:, :, 0], length_dim=1).unsqueeze(-2)
|
|
|
|
span_bdy = None
|
|
if 'span_bdy' in output.keys():
|
|
span_bdy = output['span_bdy']
|
|
|
|
# dual_mask 的是混合中英时候同时 mask 语音和文本
|
|
# ernie sat 在实现跨语言的时候都 mask 了
|
|
if text_masking:
|
|
masked_pos, text_masked_pos = phones_text_masking(
|
|
xs_pad=speech_pad,
|
|
src_mask=speech_mask,
|
|
text_pad=text_pad,
|
|
text_mask=text_mask,
|
|
align_start=align_start,
|
|
align_end=align_end,
|
|
align_start_lens=align_start_lens,
|
|
mlm_prob=mlm_prob,
|
|
mean_phn_span=mean_phn_span,
|
|
span_bdy=span_bdy)
|
|
# 训练纯中文和纯英文的 -> a3t 没有对 phoneme 做 mask, 只对语音 mask 了
|
|
# a3t 和 ernie sat 的区别主要在于做 mask 的时候
|
|
else:
|
|
masked_pos = phones_masking(
|
|
xs_pad=speech_pad,
|
|
src_mask=speech_mask,
|
|
align_start=align_start,
|
|
align_end=align_end,
|
|
align_start_lens=align_start_lens,
|
|
mlm_prob=mlm_prob,
|
|
mean_phn_span=mean_phn_span,
|
|
span_bdy=span_bdy)
|
|
text_masked_pos = paddle.zeros(paddle.shape(text_pad))
|
|
|
|
output_dict = {}
|
|
|
|
speech_seg_pos, text_seg_pos = get_seg_pos(
|
|
speech_pad=speech_pad,
|
|
text_pad=text_pad,
|
|
align_start=align_start,
|
|
align_end=align_end,
|
|
align_start_lens=align_start_lens,
|
|
seg_emb=seg_emb)
|
|
output_dict['speech'] = speech_pad
|
|
output_dict['text'] = text_pad
|
|
output_dict['masked_pos'] = masked_pos
|
|
output_dict['text_masked_pos'] = text_masked_pos
|
|
output_dict['speech_mask'] = speech_mask
|
|
output_dict['text_mask'] = text_mask
|
|
output_dict['speech_seg_pos'] = speech_seg_pos
|
|
output_dict['text_seg_pos'] = text_seg_pos
|
|
output = (uttids, output_dict)
|
|
return output
|
|
|
|
|
|
def build_mlm_collate_fn(
|
|
sr: int=24000,
|
|
n_fft: int=2048,
|
|
hop_length: int=300,
|
|
win_length: int=None,
|
|
n_mels: int=80,
|
|
fmin: int=80,
|
|
fmax: int=7600,
|
|
mlm_prob: float=0.8,
|
|
mean_phn_span: int=8,
|
|
seg_emb: bool=False,
|
|
epoch: int=-1, ):
|
|
feats_extract_class = LogMelFBank
|
|
|
|
feats_extract = feats_extract_class(
|
|
sr=sr,
|
|
n_fft=n_fft,
|
|
hop_length=hop_length,
|
|
win_length=win_length,
|
|
n_mels=n_mels,
|
|
fmin=fmin,
|
|
fmax=fmax)
|
|
|
|
if epoch == -1:
|
|
mlm_prob_factor = 1
|
|
else:
|
|
mlm_prob_factor = 0.8
|
|
|
|
return MLMCollateFn(
|
|
feats_extract=feats_extract,
|
|
mlm_prob=mlm_prob * mlm_prob_factor,
|
|
mean_phn_span=mean_phn_span,
|
|
seg_emb=seg_emb)
|