You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
298 lines
11 KiB
298 lines
11 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import os
|
|
import re
|
|
from typing import List
|
|
from typing import Optional
|
|
from typing import Union
|
|
|
|
import paddle
|
|
|
|
from ...s2t.utils.dynamic_import import dynamic_import
|
|
from ..executor import BaseExecutor
|
|
from ..log import logger
|
|
from ..utils import cli_register
|
|
from ..utils import download_and_decompress
|
|
from ..utils import MODEL_HOME
|
|
from ..utils import stats_wrapper
|
|
|
|
__all__ = ['TextExecutor']
|
|
|
|
pretrained_models = {
|
|
# The tags for pretrained_models should be "{model_name}[_{dataset}][-{lang}][-...]".
|
|
# e.g. "conformer_wenetspeech-zh-16k", "transformer_aishell-zh-16k" and "panns_cnn6-32k".
|
|
# Command line and python api use "{model_name}[_{dataset}]" as --model, usage:
|
|
# "paddlespeech asr --model conformer_wenetspeech --lang zh --sr 16000 --input ./input.wav"
|
|
"ernie_linear_p7_wudao-punc-zh": {
|
|
'url':
|
|
'https://paddlespeech.bj.bcebos.com/text/ernie_linear_p7_wudao-punc-zh.tar.gz',
|
|
'md5':
|
|
'12283e2ddde1797c5d1e57036b512746',
|
|
'cfg_path':
|
|
'ckpt/model_config.json',
|
|
'ckpt_path':
|
|
'ckpt/model_state.pdparams',
|
|
'vocab_file':
|
|
'punc_vocab.txt',
|
|
},
|
|
"ernie_linear_p3_wudao-punc-zh": {
|
|
'url':
|
|
'https://paddlespeech.bj.bcebos.com/text/ernie_linear_p3_wudao-punc-zh.tar.gz',
|
|
'md5':
|
|
'448eb2fdf85b6a997e7e652e80c51dd2',
|
|
'cfg_path':
|
|
'ckpt/model_config.json',
|
|
'ckpt_path':
|
|
'ckpt/model_state.pdparams',
|
|
'vocab_file':
|
|
'punc_vocab.txt',
|
|
},
|
|
}
|
|
|
|
model_alias = {
|
|
"ernie_linear_p7": "paddlespeech.text.models:ErnieLinear",
|
|
"ernie_linear_p3": "paddlespeech.text.models:ErnieLinear",
|
|
}
|
|
|
|
tokenizer_alias = {
|
|
"ernie_linear_p7": "paddlenlp.transformers:ErnieTokenizer",
|
|
"ernie_linear_p3": "paddlenlp.transformers:ErnieTokenizer",
|
|
}
|
|
|
|
|
|
@cli_register(name='paddlespeech.text', description='Text infer command.')
|
|
class TextExecutor(BaseExecutor):
|
|
def __init__(self):
|
|
super(TextExecutor, self).__init__()
|
|
|
|
self.parser = argparse.ArgumentParser(
|
|
prog='paddlespeech.text', add_help=True)
|
|
self.parser.add_argument(
|
|
'--input', type=str, required=True, help='Input text.')
|
|
self.parser.add_argument(
|
|
'--task',
|
|
type=str,
|
|
default='punc',
|
|
choices=['punc'],
|
|
help='Choose text task.')
|
|
self.parser.add_argument(
|
|
'--model',
|
|
type=str,
|
|
default='ernie_linear_p7_wudao',
|
|
choices=[tag[:tag.index('-')] for tag in pretrained_models.keys()],
|
|
help='Choose model type of text task.')
|
|
self.parser.add_argument(
|
|
'--lang',
|
|
type=str,
|
|
default='zh',
|
|
choices=['zh', 'en'],
|
|
help='Choose model language.')
|
|
self.parser.add_argument(
|
|
'--config',
|
|
type=str,
|
|
default=None,
|
|
help='Config of cls task. Use deault config when it is None.')
|
|
self.parser.add_argument(
|
|
'--ckpt_path',
|
|
type=str,
|
|
default=None,
|
|
help='Checkpoint file of model.')
|
|
self.parser.add_argument(
|
|
'--punc_vocab',
|
|
type=str,
|
|
default=None,
|
|
help='Vocabulary file of punctuation restoration task.')
|
|
self.parser.add_argument(
|
|
'--device',
|
|
type=str,
|
|
default=paddle.get_device(),
|
|
help='Choose device to execute model inference.')
|
|
|
|
def _get_pretrained_path(self, tag: str) -> os.PathLike:
|
|
"""
|
|
Download and returns pretrained resources path of current task.
|
|
"""
|
|
support_models = list(pretrained_models.keys())
|
|
assert tag in pretrained_models, 'The model "{}" you want to use has not been supported, please choose other models.\nThe support models includes:\n\t\t{}\n'.format(
|
|
tag, '\n\t\t'.join(support_models))
|
|
|
|
res_path = os.path.join(MODEL_HOME, tag)
|
|
decompressed_path = download_and_decompress(pretrained_models[tag],
|
|
res_path)
|
|
decompressed_path = os.path.abspath(decompressed_path)
|
|
logger.info(
|
|
'Use pretrained model stored in: {}'.format(decompressed_path))
|
|
|
|
return decompressed_path
|
|
|
|
def _init_from_path(self,
|
|
task: str='punc',
|
|
model_type: str='ernie_linear_p7_wudao',
|
|
lang: str='zh',
|
|
cfg_path: Optional[os.PathLike]=None,
|
|
ckpt_path: Optional[os.PathLike]=None,
|
|
vocab_file: Optional[os.PathLike]=None):
|
|
"""
|
|
Init model and other resources from a specific path.
|
|
"""
|
|
if hasattr(self, 'model'):
|
|
logger.info('Model had been initialized.')
|
|
return
|
|
|
|
self.task = task
|
|
|
|
if cfg_path is None or ckpt_path is None or vocab_file is None:
|
|
tag = '-'.join([model_type, task, lang])
|
|
self.res_path = self._get_pretrained_path(tag)
|
|
self.cfg_path = os.path.join(self.res_path,
|
|
pretrained_models[tag]['cfg_path'])
|
|
self.ckpt_path = os.path.join(self.res_path,
|
|
pretrained_models[tag]['ckpt_path'])
|
|
self.vocab_file = os.path.join(self.res_path,
|
|
pretrained_models[tag]['vocab_file'])
|
|
else:
|
|
self.cfg_path = os.path.abspath(cfg_path)
|
|
self.ckpt_path = os.path.abspath(ckpt_path)
|
|
self.vocab_file = os.path.abspath(vocab_file)
|
|
|
|
model_name = model_type[:model_type.rindex('_')]
|
|
if self.task == 'punc':
|
|
# punc list
|
|
self._punc_list = []
|
|
with open(self.vocab_file, 'r') as f:
|
|
for line in f:
|
|
self._punc_list.append(line.strip())
|
|
|
|
# model
|
|
model_class = dynamic_import(model_name, model_alias)
|
|
tokenizer_class = dynamic_import(model_name, tokenizer_alias)
|
|
self.model = model_class(
|
|
cfg_path=self.cfg_path, ckpt_path=self.ckpt_path)
|
|
self.tokenizer = tokenizer_class.from_pretrained('ernie-1.0')
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
self.model.eval()
|
|
|
|
def _clean_text(self, text):
|
|
text = text.lower()
|
|
text = re.sub('[^A-Za-z0-9\u4e00-\u9fa5]', '', text)
|
|
text = re.sub(f'[{"".join([p for p in self._punc_list][1:])}]', '',
|
|
text)
|
|
return text
|
|
|
|
def preprocess(self, text: Union[str, os.PathLike]):
|
|
"""
|
|
Input preprocess and return paddle.Tensor stored in self.input.
|
|
Input content can be a text(tts), a file(asr, cls) or a streaming(not supported yet).
|
|
"""
|
|
if self.task == 'punc':
|
|
clean_text = self._clean_text(text)
|
|
assert len(clean_text) > 0, f'Invalid input string: {text}'
|
|
|
|
tokenized_input = self.tokenizer(
|
|
list(clean_text), return_length=True, is_split_into_words=True)
|
|
|
|
self._inputs['input_ids'] = tokenized_input['input_ids']
|
|
self._inputs['seg_ids'] = tokenized_input['token_type_ids']
|
|
self._inputs['seq_len'] = tokenized_input['seq_len']
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
@paddle.no_grad()
|
|
def infer(self):
|
|
"""
|
|
Model inference and result stored in self.output.
|
|
"""
|
|
if self.task == 'punc':
|
|
input_ids = paddle.to_tensor(self._inputs['input_ids']).unsqueeze(0)
|
|
seg_ids = paddle.to_tensor(self._inputs['seg_ids']).unsqueeze(0)
|
|
logits, _ = self.model(input_ids, seg_ids)
|
|
preds = paddle.argmax(logits, axis=-1).squeeze(0)
|
|
|
|
self._outputs['preds'] = preds
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
def postprocess(self) -> Union[str, os.PathLike]:
|
|
"""
|
|
Output postprocess and return human-readable results such as texts and audio files.
|
|
"""
|
|
if self.task == 'punc':
|
|
input_ids = self._inputs['input_ids']
|
|
seq_len = self._inputs['seq_len']
|
|
preds = self._outputs['preds']
|
|
|
|
tokens = self.tokenizer.convert_ids_to_tokens(
|
|
input_ids[1:seq_len - 1])
|
|
labels = preds[1:seq_len - 1].tolist()
|
|
assert len(tokens) == len(labels)
|
|
|
|
text = ''
|
|
for t, l in zip(tokens, labels):
|
|
text += t
|
|
if l != 0: # Non punc.
|
|
text += self._punc_list[l]
|
|
|
|
return text
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
def execute(self, argv: List[str]) -> bool:
|
|
"""
|
|
Command line entry.
|
|
"""
|
|
parser_args = self.parser.parse_args(argv)
|
|
|
|
text = parser_args.input
|
|
task = parser_args.task
|
|
model_type = parser_args.model
|
|
lang = parser_args.lang
|
|
cfg_path = parser_args.config
|
|
ckpt_path = parser_args.ckpt_path
|
|
punc_vocab = parser_args.punc_vocab
|
|
device = parser_args.device
|
|
|
|
try:
|
|
res = self(text, task, model_type, lang, cfg_path, ckpt_path,
|
|
punc_vocab, device)
|
|
logger.info('Text Result:\n{}'.format(res))
|
|
return True
|
|
except Exception as e:
|
|
logger.exception(e)
|
|
return False
|
|
|
|
@stats_wrapper
|
|
def __call__(
|
|
self,
|
|
text: str,
|
|
task: str='punc',
|
|
model: str='ernie_linear_p7_wudao',
|
|
lang: str='zh',
|
|
config: Optional[os.PathLike]=None,
|
|
ckpt_path: Optional[os.PathLike]=None,
|
|
punc_vocab: Optional[os.PathLike]=None,
|
|
device: str=paddle.get_device(), ):
|
|
"""
|
|
Python API to call an executor.
|
|
"""
|
|
paddle.set_device(device)
|
|
self._init_from_path(task, model, lang, config, ckpt_path, punc_vocab)
|
|
self.preprocess(text)
|
|
self.infer()
|
|
res = self.postprocess() # Retrieve result of text task.
|
|
|
|
return res
|