You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
405 lines
15 KiB
405 lines
15 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import os
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from operator import itemgetter
|
|
from pathlib import Path
|
|
from typing import Any
|
|
from typing import Dict
|
|
from typing import List
|
|
|
|
import jsonlines
|
|
import librosa
|
|
import numpy as np
|
|
import tqdm
|
|
import yaml
|
|
from yacs.config import CfgNode
|
|
|
|
from paddlespeech.t2s.datasets.get_feats import Energy
|
|
from paddlespeech.t2s.datasets.get_feats import LogMelFBank
|
|
from paddlespeech.t2s.datasets.get_feats import Pitch
|
|
from paddlespeech.t2s.datasets.preprocess_utils import compare_duration_and_mel_length
|
|
from paddlespeech.t2s.datasets.preprocess_utils import get_input_token
|
|
from paddlespeech.t2s.datasets.preprocess_utils import get_phn_dur
|
|
from paddlespeech.t2s.datasets.preprocess_utils import get_spk_id_map
|
|
from paddlespeech.t2s.datasets.preprocess_utils import merge_silence
|
|
from paddlespeech.t2s.utils import str2bool
|
|
|
|
|
|
def process_sentence(config: Dict[str, Any],
|
|
fp: Path,
|
|
sentences: Dict,
|
|
output_dir: Path,
|
|
mel_extractor=None,
|
|
pitch_extractor=None,
|
|
energy_extractor=None,
|
|
cut_sil: bool=True,
|
|
spk_emb_dir: Path=None):
|
|
utt_id = fp.stem
|
|
# for vctk
|
|
if utt_id.endswith("_mic2"):
|
|
utt_id = utt_id[:-5]
|
|
record = None
|
|
if utt_id in sentences:
|
|
# reading, resampling may occur
|
|
wav, _ = librosa.load(
|
|
str(fp), sr=config.fs,
|
|
mono=False) if "canton" in str(fp) else librosa.load(
|
|
str(fp), sr=config.fs)
|
|
if len(wav.shape) == 2 and "canton" in str(fp):
|
|
# Remind that Cantonese datasets should be placed in ~/datasets/canton_all. Otherwise, it may cause problem.
|
|
wav = wav[0]
|
|
wav = np.ascontiguousarray(wav)
|
|
elif len(wav.shape) != 1:
|
|
return record
|
|
max_value = np.abs(wav).max()
|
|
if max_value > 1.0:
|
|
wav = wav / max_value
|
|
assert len(wav.shape) == 1, f"{utt_id} is not a mono-channel audio."
|
|
assert np.abs(wav).max(
|
|
) <= 1.0, f"{utt_id} is seems to be different that 16 bit PCM."
|
|
phones = sentences[utt_id][0]
|
|
durations = sentences[utt_id][1]
|
|
speaker = sentences[utt_id][2]
|
|
d_cumsum = np.pad(np.array(durations).cumsum(0), (1, 0), 'constant')
|
|
# little imprecise than use *.TextGrid directly
|
|
times = librosa.frames_to_time(
|
|
d_cumsum, sr=config.fs, hop_length=config.n_shift)
|
|
if cut_sil:
|
|
start = 0
|
|
end = d_cumsum[-1]
|
|
if phones[0] == "sil" and len(durations) > 1:
|
|
start = times[1]
|
|
durations = durations[1:]
|
|
phones = phones[1:]
|
|
if phones[-1] == 'sil' and len(durations) > 1:
|
|
end = times[-2]
|
|
durations = durations[:-1]
|
|
phones = phones[:-1]
|
|
sentences[utt_id][0] = phones
|
|
sentences[utt_id][1] = durations
|
|
start, end = librosa.time_to_samples([start, end], sr=config.fs)
|
|
wav = wav[start:end]
|
|
# extract mel feats
|
|
logmel = mel_extractor.get_log_mel_fbank(wav)
|
|
# change duration according to mel_length
|
|
compare_duration_and_mel_length(sentences, utt_id, logmel)
|
|
# utt_id may be popped in compare_duration_and_mel_length
|
|
if utt_id not in sentences:
|
|
return None
|
|
phones = sentences[utt_id][0]
|
|
durations = sentences[utt_id][1]
|
|
num_frames = logmel.shape[0]
|
|
assert sum(durations) == num_frames
|
|
mel_dir = output_dir / "data_speech"
|
|
mel_dir.mkdir(parents=True, exist_ok=True)
|
|
mel_path = mel_dir / (utt_id + "_speech.npy")
|
|
np.save(mel_path, logmel)
|
|
# extract pitch and energy
|
|
f0 = pitch_extractor.get_pitch(wav, duration=np.array(durations))
|
|
if (f0 == 0).all():
|
|
return None
|
|
assert f0.shape[0] == len(durations)
|
|
f0_dir = output_dir / "data_pitch"
|
|
f0_dir.mkdir(parents=True, exist_ok=True)
|
|
f0_path = f0_dir / (utt_id + "_pitch.npy")
|
|
np.save(f0_path, f0)
|
|
energy = energy_extractor.get_energy(wav, duration=np.array(durations))
|
|
assert energy.shape[0] == len(durations)
|
|
energy_dir = output_dir / "data_energy"
|
|
energy_dir.mkdir(parents=True, exist_ok=True)
|
|
energy_path = energy_dir / (utt_id + "_energy.npy")
|
|
np.save(energy_path, energy)
|
|
record = {
|
|
"utt_id": utt_id,
|
|
"phones": phones,
|
|
"text_lengths": len(phones),
|
|
"speech_lengths": num_frames,
|
|
"durations": durations,
|
|
"speech": str(mel_path),
|
|
"pitch": str(f0_path),
|
|
"energy": str(energy_path),
|
|
"speaker": speaker
|
|
}
|
|
if spk_emb_dir:
|
|
if speaker in os.listdir(spk_emb_dir):
|
|
embed_name = utt_id + ".npy"
|
|
embed_path = spk_emb_dir / speaker / embed_name
|
|
if embed_path.is_file():
|
|
record["spk_emb"] = str(embed_path)
|
|
else:
|
|
return None
|
|
return record
|
|
|
|
|
|
def process_sentences(config,
|
|
fps: List[Path],
|
|
sentences: Dict,
|
|
output_dir: Path,
|
|
mel_extractor=None,
|
|
pitch_extractor=None,
|
|
energy_extractor=None,
|
|
nprocs: int=1,
|
|
cut_sil: bool=True,
|
|
spk_emb_dir: Path=None,
|
|
write_metadata_method: str='w'):
|
|
if nprocs == 1:
|
|
results = []
|
|
for fp in tqdm.tqdm(fps, total=len(fps)):
|
|
record = process_sentence(
|
|
config=config,
|
|
fp=fp,
|
|
sentences=sentences,
|
|
output_dir=output_dir,
|
|
mel_extractor=mel_extractor,
|
|
pitch_extractor=pitch_extractor,
|
|
energy_extractor=energy_extractor,
|
|
cut_sil=cut_sil,
|
|
spk_emb_dir=spk_emb_dir)
|
|
if record:
|
|
results.append(record)
|
|
else:
|
|
with ThreadPoolExecutor(nprocs) as pool:
|
|
futures = []
|
|
with tqdm.tqdm(total=len(fps)) as progress:
|
|
for fp in fps:
|
|
future = pool.submit(process_sentence, config, fp,
|
|
sentences, output_dir, mel_extractor,
|
|
pitch_extractor, energy_extractor,
|
|
cut_sil, spk_emb_dir)
|
|
future.add_done_callback(lambda p: progress.update())
|
|
futures.append(future)
|
|
|
|
results = []
|
|
for ft in futures:
|
|
record = ft.result()
|
|
if record:
|
|
results.append(record)
|
|
|
|
results.sort(key=itemgetter("utt_id"))
|
|
with jsonlines.open(output_dir / "metadata.jsonl",
|
|
write_metadata_method) as writer:
|
|
for item in results:
|
|
writer.write(item)
|
|
print("Done")
|
|
|
|
|
|
def main():
|
|
# parse config and args
|
|
parser = argparse.ArgumentParser(
|
|
description="Preprocess audio and then extract features.")
|
|
|
|
parser.add_argument(
|
|
"--dataset",
|
|
default="baker",
|
|
type=str,
|
|
help="name of dataset, should in {baker, aishell3, ljspeech, vctk} now")
|
|
|
|
parser.add_argument(
|
|
"--rootdir", default=None, type=str, help="directory to dataset.")
|
|
|
|
parser.add_argument(
|
|
"--dumpdir",
|
|
type=str,
|
|
required=True,
|
|
help="directory to dump feature files.")
|
|
parser.add_argument(
|
|
"--dur-file", default=None, type=str, help="path to durations.txt.")
|
|
|
|
parser.add_argument("--config", type=str, help="fastspeech2 config file.")
|
|
|
|
parser.add_argument(
|
|
"--num-cpu", type=int, default=1, help="number of process.")
|
|
|
|
parser.add_argument(
|
|
"--cut-sil",
|
|
type=str2bool,
|
|
default=True,
|
|
help="whether cut sil in the edge of audio")
|
|
|
|
parser.add_argument(
|
|
"--spk_emb_dir",
|
|
default=None,
|
|
type=str,
|
|
help="directory to speaker embedding files.")
|
|
|
|
parser.add_argument(
|
|
"--write_metadata_method",
|
|
default="w",
|
|
type=str,
|
|
choices=["w", "a"],
|
|
help="How the metadata.jsonl file is written.")
|
|
args = parser.parse_args()
|
|
|
|
rootdir = Path(args.rootdir).expanduser()
|
|
dumpdir = Path(args.dumpdir).expanduser()
|
|
# use absolute path
|
|
dumpdir = dumpdir.resolve()
|
|
dumpdir.mkdir(parents=True, exist_ok=True)
|
|
dur_file = Path(args.dur_file).expanduser()
|
|
|
|
if args.spk_emb_dir:
|
|
spk_emb_dir = Path(args.spk_emb_dir).expanduser().resolve()
|
|
else:
|
|
spk_emb_dir = None
|
|
|
|
assert rootdir.is_dir()
|
|
assert dur_file.is_file()
|
|
|
|
with open(args.config, 'rt') as f:
|
|
config = CfgNode(yaml.safe_load(f))
|
|
|
|
sentences, speaker_set = get_phn_dur(dur_file)
|
|
|
|
merge_silence(sentences)
|
|
phone_id_map_path = dumpdir / "phone_id_map.txt"
|
|
speaker_id_map_path = dumpdir / "speaker_id_map.txt"
|
|
get_input_token(sentences, phone_id_map_path, args.dataset)
|
|
get_spk_id_map(speaker_set, speaker_id_map_path)
|
|
|
|
if args.dataset == "baker":
|
|
wav_files = sorted(list((rootdir / "Wave").rglob("*.wav")))
|
|
# split data into 3 sections
|
|
num_train = 9800
|
|
num_dev = 100
|
|
train_wav_files = wav_files[:num_train]
|
|
dev_wav_files = wav_files[num_train:num_train + num_dev]
|
|
test_wav_files = wav_files[num_train + num_dev:]
|
|
elif args.dataset == "aishell3":
|
|
sub_num_dev = 5
|
|
wav_dir = rootdir / "train" / "wav"
|
|
train_wav_files = []
|
|
dev_wav_files = []
|
|
test_wav_files = []
|
|
for speaker in os.listdir(wav_dir):
|
|
wav_files = sorted(list((wav_dir / speaker).rglob("*.wav")))
|
|
if len(wav_files) > 100:
|
|
train_wav_files += wav_files[:-sub_num_dev * 2]
|
|
dev_wav_files += wav_files[-sub_num_dev * 2:-sub_num_dev]
|
|
test_wav_files += wav_files[-sub_num_dev:]
|
|
else:
|
|
train_wav_files += wav_files
|
|
elif args.dataset == "canton":
|
|
sub_num_dev = 5
|
|
wav_dir = rootdir / "WAV"
|
|
train_wav_files = []
|
|
dev_wav_files = []
|
|
test_wav_files = []
|
|
for speaker in os.listdir(wav_dir):
|
|
wav_files = sorted(list((wav_dir / speaker).rglob("*.wav")))
|
|
if len(wav_files) > 100:
|
|
train_wav_files += wav_files[:-sub_num_dev * 2]
|
|
dev_wav_files += wav_files[-sub_num_dev * 2:-sub_num_dev]
|
|
test_wav_files += wav_files[-sub_num_dev:]
|
|
else:
|
|
train_wav_files += wav_files
|
|
elif args.dataset == "ljspeech":
|
|
wav_files = sorted(list((rootdir / "wavs").rglob("*.wav")))
|
|
# split data into 3 sections
|
|
num_train = 12900
|
|
num_dev = 100
|
|
train_wav_files = wav_files[:num_train]
|
|
dev_wav_files = wav_files[num_train:num_train + num_dev]
|
|
test_wav_files = wav_files[num_train + num_dev:]
|
|
elif args.dataset == "vctk":
|
|
sub_num_dev = 5
|
|
wav_dir = rootdir / "wav48_silence_trimmed"
|
|
train_wav_files = []
|
|
dev_wav_files = []
|
|
test_wav_files = []
|
|
for speaker in os.listdir(wav_dir):
|
|
wav_files = sorted(list((wav_dir / speaker).rglob("*_mic2.flac")))
|
|
if len(wav_files) > 100:
|
|
train_wav_files += wav_files[:-sub_num_dev * 2]
|
|
dev_wav_files += wav_files[-sub_num_dev * 2:-sub_num_dev]
|
|
test_wav_files += wav_files[-sub_num_dev:]
|
|
else:
|
|
train_wav_files += wav_files
|
|
|
|
else:
|
|
print("dataset should in {baker, aishell3, ljspeech, vctk} now!")
|
|
|
|
train_dump_dir = dumpdir / "train" / "raw"
|
|
train_dump_dir.mkdir(parents=True, exist_ok=True)
|
|
dev_dump_dir = dumpdir / "dev" / "raw"
|
|
dev_dump_dir.mkdir(parents=True, exist_ok=True)
|
|
test_dump_dir = dumpdir / "test" / "raw"
|
|
test_dump_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
# Extractor
|
|
mel_extractor = LogMelFBank(
|
|
sr=config.fs,
|
|
n_fft=config.n_fft,
|
|
hop_length=config.n_shift,
|
|
win_length=config.win_length,
|
|
window=config.window,
|
|
n_mels=config.n_mels,
|
|
fmin=config.fmin,
|
|
fmax=config.fmax)
|
|
pitch_extractor = Pitch(
|
|
sr=config.fs,
|
|
hop_length=config.n_shift,
|
|
f0min=config.f0min,
|
|
f0max=config.f0max)
|
|
energy_extractor = Energy(
|
|
n_fft=config.n_fft,
|
|
hop_length=config.n_shift,
|
|
win_length=config.win_length,
|
|
window=config.window)
|
|
|
|
# process for the 3 sections
|
|
if train_wav_files:
|
|
process_sentences(
|
|
config=config,
|
|
fps=train_wav_files,
|
|
sentences=sentences,
|
|
output_dir=train_dump_dir,
|
|
mel_extractor=mel_extractor,
|
|
pitch_extractor=pitch_extractor,
|
|
energy_extractor=energy_extractor,
|
|
nprocs=args.num_cpu,
|
|
cut_sil=args.cut_sil,
|
|
spk_emb_dir=spk_emb_dir,
|
|
write_metadata_method=args.write_metadata_method)
|
|
if dev_wav_files:
|
|
process_sentences(
|
|
config=config,
|
|
fps=dev_wav_files,
|
|
sentences=sentences,
|
|
output_dir=dev_dump_dir,
|
|
mel_extractor=mel_extractor,
|
|
pitch_extractor=pitch_extractor,
|
|
energy_extractor=energy_extractor,
|
|
cut_sil=args.cut_sil,
|
|
spk_emb_dir=spk_emb_dir,
|
|
write_metadata_method=args.write_metadata_method)
|
|
if test_wav_files:
|
|
process_sentences(
|
|
config=config,
|
|
fps=test_wav_files,
|
|
sentences=sentences,
|
|
output_dir=test_dump_dir,
|
|
mel_extractor=mel_extractor,
|
|
pitch_extractor=pitch_extractor,
|
|
energy_extractor=energy_extractor,
|
|
nprocs=args.num_cpu,
|
|
cut_sil=args.cut_sil,
|
|
spk_emb_dir=spk_emb_dir,
|
|
write_metadata_method=args.write_metadata_method)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|