You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/exps/vits/train.py

266 lines
8.8 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
import shutil
from pathlib import Path
import jsonlines
import numpy as np
import paddle
import yaml
from paddle import DataParallel
from paddle import distributed as dist
from paddle.io import DataLoader
from paddle.io import DistributedBatchSampler
from paddle.optimizer import Adam
from yacs.config import CfgNode
from paddlespeech.t2s.datasets.am_batch_fn import vits_single_spk_batch_fn
from paddlespeech.t2s.datasets.data_table import DataTable
from paddlespeech.t2s.models.vits import VITS
from paddlespeech.t2s.models.vits import VITSEvaluator
from paddlespeech.t2s.models.vits import VITSUpdater
from paddlespeech.t2s.modules.losses import DiscriminatorAdversarialLoss
from paddlespeech.t2s.modules.losses import FeatureMatchLoss
from paddlespeech.t2s.modules.losses import GeneratorAdversarialLoss
from paddlespeech.t2s.modules.losses import KLDivergenceLoss
from paddlespeech.t2s.modules.losses import MelSpectrogramLoss
from paddlespeech.t2s.training.extensions.snapshot import Snapshot
from paddlespeech.t2s.training.extensions.visualizer import VisualDL
from paddlespeech.t2s.training.optimizer import scheduler_classes
from paddlespeech.t2s.training.seeding import seed_everything
from paddlespeech.t2s.training.trainer import Trainer
def train_sp(args, config):
# decides device type and whether to run in parallel
# setup running environment correctly
world_size = paddle.distributed.get_world_size()
if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0:
paddle.set_device("cpu")
else:
paddle.set_device("gpu")
if world_size > 1:
paddle.distributed.init_parallel_env()
# set the random seed, it is a must for multiprocess training
seed_everything(config.seed)
print(
f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}",
)
# dataloader has been too verbose
logging.getLogger("DataLoader").disabled = True
fields = ["text", "text_lengths", "feats", "feats_lengths", "wave"]
converters = {
"wave": np.load,
"feats": np.load,
}
# construct dataset for training and validation
with jsonlines.open(args.train_metadata, 'r') as reader:
train_metadata = list(reader)
train_dataset = DataTable(
data=train_metadata,
fields=fields,
converters=converters, )
with jsonlines.open(args.dev_metadata, 'r') as reader:
dev_metadata = list(reader)
dev_dataset = DataTable(
data=dev_metadata,
fields=fields,
converters=converters, )
# collate function and dataloader
train_sampler = DistributedBatchSampler(
train_dataset,
batch_size=config.batch_size,
shuffle=True,
drop_last=True)
dev_sampler = DistributedBatchSampler(
dev_dataset,
batch_size=config.batch_size,
shuffle=False,
drop_last=False)
print("samplers done!")
train_batch_fn = vits_single_spk_batch_fn
train_dataloader = DataLoader(
train_dataset,
batch_sampler=train_sampler,
collate_fn=train_batch_fn,
num_workers=config.num_workers)
dev_dataloader = DataLoader(
dev_dataset,
batch_sampler=dev_sampler,
collate_fn=train_batch_fn,
num_workers=config.num_workers)
print("dataloaders done!")
with open(args.phones_dict, "r") as f:
phn_id = [line.strip().split() for line in f.readlines()]
vocab_size = len(phn_id)
print("vocab_size:", vocab_size)
odim = config.n_fft // 2 + 1
model = VITS(idim=vocab_size, odim=odim, **config["model"])
gen_parameters = model.generator.parameters()
dis_parameters = model.discriminator.parameters()
if world_size > 1:
model = DataParallel(model)
gen_parameters = model._layers.generator.parameters()
dis_parameters = model._layers.discriminator.parameters()
print("model done!")
# loss
criterion_mel = MelSpectrogramLoss(
**config["mel_loss_params"], )
criterion_feat_match = FeatureMatchLoss(
**config["feat_match_loss_params"], )
criterion_gen_adv = GeneratorAdversarialLoss(
**config["generator_adv_loss_params"], )
criterion_dis_adv = DiscriminatorAdversarialLoss(
**config["discriminator_adv_loss_params"], )
criterion_kl = KLDivergenceLoss()
print("criterions done!")
lr_schedule_g = scheduler_classes[config["generator_scheduler"]](
**config["generator_scheduler_params"])
optimizer_g = Adam(
learning_rate=lr_schedule_g,
parameters=gen_parameters,
**config["generator_optimizer_params"])
lr_schedule_d = scheduler_classes[config["discriminator_scheduler"]](
**config["discriminator_scheduler_params"])
optimizer_d = Adam(
learning_rate=lr_schedule_d,
parameters=dis_parameters,
**config["discriminator_optimizer_params"])
print("optimizers done!")
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
if dist.get_rank() == 0:
config_name = args.config.split("/")[-1]
# copy conf to output_dir
shutil.copyfile(args.config, output_dir / config_name)
updater = VITSUpdater(
model=model,
optimizers={
"generator": optimizer_g,
"discriminator": optimizer_d,
},
criterions={
"mel": criterion_mel,
"feat_match": criterion_feat_match,
"gen_adv": criterion_gen_adv,
"dis_adv": criterion_dis_adv,
"kl": criterion_kl,
},
schedulers={
"generator": lr_schedule_g,
"discriminator": lr_schedule_d,
},
dataloader=train_dataloader,
lambda_adv=config.lambda_adv,
lambda_mel=config.lambda_mel,
lambda_kl=config.lambda_kl,
lambda_feat_match=config.lambda_feat_match,
lambda_dur=config.lambda_dur,
generator_first=config.generator_first,
output_dir=output_dir)
evaluator = VITSEvaluator(
model=model,
criterions={
"mel": criterion_mel,
"feat_match": criterion_feat_match,
"gen_adv": criterion_gen_adv,
"dis_adv": criterion_dis_adv,
"kl": criterion_kl,
},
dataloader=dev_dataloader,
lambda_adv=config.lambda_adv,
lambda_mel=config.lambda_mel,
lambda_kl=config.lambda_kl,
lambda_feat_match=config.lambda_feat_match,
lambda_dur=config.lambda_dur,
generator_first=config.generator_first,
output_dir=output_dir)
trainer = Trainer(
updater,
stop_trigger=(config.train_max_steps, "iteration"),
out=output_dir)
if dist.get_rank() == 0:
trainer.extend(
evaluator, trigger=(config.eval_interval_steps, 'iteration'))
trainer.extend(VisualDL(output_dir), trigger=(1, 'iteration'))
trainer.extend(
Snapshot(max_size=config.num_snapshots),
trigger=(config.save_interval_steps, 'iteration'))
print("Trainer Done!")
trainer.run()
def main():
# parse args and config and redirect to train_sp
parser = argparse.ArgumentParser(description="Train a VITS model.")
parser.add_argument("--config", type=str, help="VITS config file")
parser.add_argument("--train-metadata", type=str, help="training data.")
parser.add_argument("--dev-metadata", type=str, help="dev data.")
parser.add_argument("--output-dir", type=str, help="output dir.")
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
parser.add_argument(
"--phones-dict", type=str, default=None, help="phone vocabulary file.")
args = parser.parse_args()
with open(args.config, 'rt') as f:
config = CfgNode(yaml.safe_load(f))
print("========Args========")
print(yaml.safe_dump(vars(args)))
print("========Config========")
print(config)
print(
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
)
# dispatch
if args.ngpu > 1:
dist.spawn(train_sp, (args, config), nprocs=args.ngpu)
else:
train_sp(args, config)
if __name__ == "__main__":
main()