You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/utils/compute_mean_std.py

61 lines
2.2 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Compute mean and std for feature normalizer, and save to file."""
import argparse
import functools
from deepspeech.frontend.normalizer import FeatureNormalizer
from deepspeech.frontend.augmentor.augmentation import AugmentationPipeline
from deepspeech.frontend.featurizer.audio_featurizer import AudioFeaturizer
from deepspeech.utils.utility import add_arguments, print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('num_samples', int, 2000, "# of samples to for statistics.")
add_arg('specgram_type', str,
'linear',
"Audio feature type. Options: linear, mfcc.",
choices=['linear', 'mfcc'])
add_arg('manifest_path', str,
'data/librispeech/manifest.train',
"Filepath of manifest to compute normalizer's mean and stddev.")
add_arg('output_path', str,
'data/librispeech/mean_std.npz',
"Filepath of write mean and stddev to (.npz).")
# yapf: disable
args = parser.parse_args()
def main():
print_arguments(args)
augmentation_pipeline = AugmentationPipeline('{}')
audio_featurizer = AudioFeaturizer(specgram_type=args.specgram_type)
def augment_and_featurize(audio_segment):
augmentation_pipeline.transform_audio(audio_segment)
return audio_featurizer.featurize(audio_segment)
normalizer = FeatureNormalizer(
mean_std_filepath=None,
manifest_path=args.manifest_path,
featurize_func=augment_and_featurize,
num_samples=args.num_samples)
normalizer.write_to_file(args.output_path)
if __name__ == '__main__':
main()