You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
311 lines
11 KiB
311 lines
11 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import math
|
|
import logging
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
from paddle.nn import functional as F
|
|
from paddle.nn import initializer as I
|
|
|
|
from deepspeech.modules.mask import sequence_mask
|
|
from deepspeech.modules.activation import brelu
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
__all__ = ['RNNStack']
|
|
|
|
|
|
class RNNCell(nn.RNNCellBase):
|
|
r"""
|
|
Elman RNN (SimpleRNN) cell. Given the inputs and previous states, it
|
|
computes the outputs and updates states.
|
|
The formula used is as follows:
|
|
.. math::
|
|
h_{t} & = act(x_{t} + b_{ih} + W_{hh}h_{t-1} + b_{hh})
|
|
y_{t} & = h_{t}
|
|
|
|
where :math:`act` is for :attr:`activation`.
|
|
"""
|
|
|
|
def __init__(self,
|
|
hidden_size,
|
|
activation="tanh",
|
|
weight_ih_attr=None,
|
|
weight_hh_attr=None,
|
|
bias_ih_attr=None,
|
|
bias_hh_attr=None,
|
|
name=None):
|
|
super().__init__()
|
|
std = 1.0 / math.sqrt(hidden_size)
|
|
self.weight_hh = self.create_parameter(
|
|
(hidden_size, hidden_size),
|
|
weight_hh_attr,
|
|
default_initializer=I.Uniform(-std, std))
|
|
self.bias_ih = None
|
|
self.bias_hh = self.create_parameter(
|
|
(hidden_size, ),
|
|
bias_hh_attr,
|
|
is_bias=True,
|
|
default_initializer=I.Uniform(-std, std))
|
|
|
|
self.hidden_size = hidden_size
|
|
if activation not in ["tanh", "relu", "brelu"]:
|
|
raise ValueError(
|
|
"activation for SimpleRNNCell should be tanh or relu, "
|
|
"but get {}".format(activation))
|
|
self.activation = activation
|
|
self._activation_fn = paddle.tanh \
|
|
if activation == "tanh" \
|
|
else F.relu
|
|
if activation == 'brelu':
|
|
self._activation_fn = brelu
|
|
|
|
def forward(self, inputs, states=None):
|
|
if states is None:
|
|
states = self.get_initial_states(inputs, self.state_shape)
|
|
pre_h = states
|
|
i2h = inputs
|
|
if self.bias_ih is not None:
|
|
i2h += self.bias_ih
|
|
h2h = paddle.matmul(pre_h, self.weight_hh, transpose_y=True)
|
|
if self.bias_hh is not None:
|
|
h2h += self.bias_hh
|
|
h = self._activation_fn(i2h + h2h)
|
|
return h, h
|
|
|
|
@property
|
|
def state_shape(self):
|
|
return (self.hidden_size, )
|
|
|
|
|
|
class GRUCell(nn.RNNCellBase):
|
|
r"""
|
|
Gated Recurrent Unit (GRU) RNN cell. Given the inputs and previous states,
|
|
it computes the outputs and updates states.
|
|
The formula for GRU used is as follows:
|
|
.. math::
|
|
r_{t} & = \sigma(W_{ir}x_{t} + b_{ir} + W_{hr}h_{t-1} + b_{hr})
|
|
z_{t} & = \sigma(W_{iz}x_{t} + b_{iz} + W_{hz}h_{t-1} + b_{hz})
|
|
\widetilde{h}_{t} & = \tanh(W_{ic}x_{t} + b_{ic} + r_{t} * (W_{hc}h_{t-1} + b_{hc}))
|
|
h_{t} & = z_{t} * h_{t-1} + (1 - z_{t}) * \widetilde{h}_{t}
|
|
y_{t} & = h_{t}
|
|
|
|
where :math:`\sigma` is the sigmoid fucntion, and * is the elemetwise
|
|
multiplication operator.
|
|
"""
|
|
|
|
def __init__(self,
|
|
input_size,
|
|
hidden_size,
|
|
weight_ih_attr=None,
|
|
weight_hh_attr=None,
|
|
bias_ih_attr=None,
|
|
bias_hh_attr=None,
|
|
name=None):
|
|
super().__init__()
|
|
std = 1.0 / math.sqrt(hidden_size)
|
|
self.weight_hh = self.create_parameter(
|
|
(3 * hidden_size, hidden_size),
|
|
weight_hh_attr,
|
|
default_initializer=I.Uniform(-std, std))
|
|
self.bias_ih = None
|
|
self.bias_hh = self.create_parameter(
|
|
(3 * hidden_size, ),
|
|
bias_hh_attr,
|
|
is_bias=True,
|
|
default_initializer=I.Uniform(-std, std))
|
|
|
|
self.hidden_size = hidden_size
|
|
self.input_size = input_size
|
|
self._gate_activation = F.sigmoid
|
|
self._activation = paddle.tanh
|
|
#self._activation = F.relu
|
|
|
|
def forward(self, inputs, states=None):
|
|
if states is None:
|
|
states = self.get_initial_states(inputs, self.state_shape)
|
|
|
|
pre_hidden = states
|
|
x_gates = inputs
|
|
if self.bias_ih is not None:
|
|
x_gates = x_gates + self.bias_ih
|
|
h_gates = paddle.matmul(pre_hidden, self.weight_hh, transpose_y=True)
|
|
if self.bias_hh is not None:
|
|
h_gates = h_gates + self.bias_hh
|
|
|
|
x_r, x_z, x_c = paddle.split(x_gates, num_or_sections=3, axis=1)
|
|
h_r, h_z, h_c = paddle.split(h_gates, num_or_sections=3, axis=1)
|
|
|
|
r = self._gate_activation(x_r + h_r)
|
|
z = self._gate_activation(x_z + h_z)
|
|
c = self._activation(x_c + r * h_c) # apply reset gate after mm
|
|
h = (pre_hidden - c) * z + c
|
|
# https://www.paddlepaddle.org.cn/documentation/docs/zh/api/paddle/fluid/layers/dynamic_gru_cn.html#dynamic-gru
|
|
|
|
return h, h
|
|
|
|
@property
|
|
def state_shape(self):
|
|
r"""
|
|
The `state_shape` of GRUCell is a shape `[hidden_size]` (-1 for batch
|
|
size would be automatically inserted into shape). The shape corresponds
|
|
to the shape of :math:`h_{t-1}`.
|
|
"""
|
|
return (self.hidden_size, )
|
|
|
|
|
|
class BiRNNWithBN(nn.Layer):
|
|
"""Bidirectonal simple rnn layer with sequence-wise batch normalization.
|
|
The batch normalization is only performed on input-state weights.
|
|
|
|
:param name: Name of the layer parameters.
|
|
:type name: string
|
|
:param size: Dimension of RNN cells.
|
|
:type size: int
|
|
:param share_weights: Whether to share input-hidden weights between
|
|
forward and backward directional RNNs.
|
|
:type share_weights: bool
|
|
:return: Bidirectional simple rnn layer.
|
|
:rtype: Variable
|
|
"""
|
|
|
|
def __init__(self, i_size, h_size, share_weights):
|
|
super().__init__()
|
|
self.share_weights = share_weights
|
|
if self.share_weights:
|
|
#input-hidden weights shared between bi-directional rnn.
|
|
self.fw_fc = nn.Linear(i_size, h_size, bias_attr=False)
|
|
# batch norm is only performed on input-state projection
|
|
self.fw_bn = nn.BatchNorm1D(
|
|
h_size, bias_attr=None, data_format='NLC')
|
|
self.bw_fc = self.fw_fc
|
|
self.bw_bn = self.fw_bn
|
|
else:
|
|
self.fw_fc = nn.Linear(i_size, h_size, bias_attr=False)
|
|
self.fw_bn = nn.BatchNorm1D(
|
|
h_size, bias_attr=None, data_format='NLC')
|
|
self.bw_fc = nn.Linear(i_size, h_size, bias_attr=False)
|
|
self.bw_bn = nn.BatchNorm1D(
|
|
h_size, bias_attr=None, data_format='NLC')
|
|
|
|
self.fw_cell = RNNCell(hidden_size=h_size, activation='brelu')
|
|
self.bw_cell = RNNCell(hidden_size=h_size, activation='brelu')
|
|
self.fw_rnn = nn.RNN(
|
|
self.fw_cell, is_reverse=False, time_major=False) #[B, T, D]
|
|
self.bw_rnn = nn.RNN(
|
|
self.fw_cell, is_reverse=True, time_major=False) #[B, T, D]
|
|
|
|
def forward(self, x, x_len):
|
|
# x, shape [B, T, D]
|
|
fw_x = self.fw_bn(self.fw_fc(x))
|
|
bw_x = self.bw_bn(self.bw_fc(x))
|
|
fw_x, _ = self.fw_rnn(inputs=fw_x, sequence_length=x_len)
|
|
bw_x, _ = self.bw_rnn(inputs=bw_x, sequence_length=x_len)
|
|
x = paddle.concat([fw_x, bw_x], axis=-1)
|
|
return x, x_len
|
|
|
|
|
|
class BiGRUWithBN(nn.Layer):
|
|
"""Bidirectonal gru layer with sequence-wise batch normalization.
|
|
The batch normalization is only performed on input-state weights.
|
|
|
|
:param name: Name of the layer.
|
|
:type name: string
|
|
:param input: Input layer.
|
|
:type input: Variable
|
|
:param size: Dimension of GRU cells.
|
|
:type size: int
|
|
:param act: Activation type.
|
|
:type act: string
|
|
:return: Bidirectional GRU layer.
|
|
:rtype: Variable
|
|
"""
|
|
|
|
def __init__(self, i_size, h_size, act):
|
|
super().__init__()
|
|
hidden_size = h_size * 3
|
|
|
|
self.fw_fc = nn.Linear(i_size, hidden_size, bias_attr=False)
|
|
self.fw_bn = nn.BatchNorm1D(
|
|
hidden_size, bias_attr=None, data_format='NLC')
|
|
self.bw_fc = nn.Linear(i_size, hidden_size, bias_attr=False)
|
|
self.bw_bn = nn.BatchNorm1D(
|
|
hidden_size, bias_attr=None, data_format='NLC')
|
|
|
|
self.fw_cell = GRUCell(input_size=hidden_size, hidden_size=h_size)
|
|
self.bw_cell = GRUCell(input_size=hidden_size, hidden_size=h_size)
|
|
self.fw_rnn = nn.RNN(
|
|
self.fw_cell, is_reverse=False, time_major=False) #[B, T, D]
|
|
self.bw_rnn = nn.RNN(
|
|
self.fw_cell, is_reverse=True, time_major=False) #[B, T, D]
|
|
|
|
def forward(self, x, x_len):
|
|
# x, shape [B, T, D]
|
|
fw_x = self.fw_bn(self.fw_fc(x))
|
|
bw_x = self.bw_bn(self.bw_fc(x))
|
|
fw_x, _ = self.fw_rnn(inputs=fw_x, sequence_length=x_len)
|
|
bw_x, _ = self.bw_rnn(inputs=bw_x, sequence_length=x_len)
|
|
x = paddle.concat([fw_x, bw_x], axis=-1)
|
|
return x, x_len
|
|
|
|
|
|
class RNNStack(nn.Layer):
|
|
"""RNN group with stacked bidirectional simple RNN or GRU layers.
|
|
|
|
:param input: Input layer.
|
|
:type input: Variable
|
|
:param size: Dimension of RNN cells in each layer.
|
|
:type size: int
|
|
:param num_stacks: Number of stacked rnn layers.
|
|
:type num_stacks: int
|
|
:param use_gru: Use gru if set True. Use simple rnn if set False.
|
|
:type use_gru: bool
|
|
:param share_rnn_weights: Whether to share input-hidden weights between
|
|
forward and backward directional RNNs.
|
|
It is only available when use_gru=False.
|
|
:type share_weights: bool
|
|
:return: Output layer of the RNN group.
|
|
:rtype: Variable
|
|
"""
|
|
|
|
def __init__(self, i_size, h_size, num_stacks, use_gru, share_rnn_weights):
|
|
super().__init__()
|
|
self.rnn_stacks = nn.LayerList()
|
|
for i in range(num_stacks):
|
|
if use_gru:
|
|
#default:GRU using tanh
|
|
self.rnn_stacks.append(
|
|
BiGRUWithBN(i_size=i_size, h_size=h_size, act="relu"))
|
|
else:
|
|
self.rnn_stacks.append(
|
|
BiRNNWithBN(
|
|
i_size=i_size,
|
|
h_size=h_size,
|
|
share_weights=share_rnn_weights))
|
|
i_size = h_size * 2
|
|
|
|
def forward(self, x, x_len):
|
|
"""
|
|
x: shape [B, T, D]
|
|
x_len: shpae [B]
|
|
"""
|
|
for i, rnn in enumerate(self.rnn_stacks):
|
|
x, x_len = rnn(x, x_len)
|
|
masks = sequence_mask(x_len) #[B, T]
|
|
masks = masks.unsqueeze(-1) # [B, T, 1]
|
|
x = x.multiply(masks)
|
|
return x, x_len
|