You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
163 lines
5.0 KiB
163 lines
5.0 KiB
from pathlib import Path
|
|
from typing import Dict
|
|
from typing import List
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import yaml
|
|
from sedit_arg_parser import parse_args
|
|
from yacs.config import CfgNode
|
|
|
|
from paddlespeech.t2s.exps.syn_utils import get_am_inference
|
|
from paddlespeech.t2s.exps.syn_utils import get_voc_inference
|
|
|
|
|
|
def read_2col_text(path: Union[Path, str]) -> Dict[str, str]:
|
|
"""Read a text file having 2 column as dict object.
|
|
|
|
Examples:
|
|
wav.scp:
|
|
key1 /some/path/a.wav
|
|
key2 /some/path/b.wav
|
|
|
|
>>> read_2col_text('wav.scp')
|
|
{'key1': '/some/path/a.wav', 'key2': '/some/path/b.wav'}
|
|
|
|
"""
|
|
|
|
data = {}
|
|
with Path(path).open("r", encoding="utf-8") as f:
|
|
for linenum, line in enumerate(f, 1):
|
|
sps = line.rstrip().split(maxsplit=1)
|
|
if len(sps) == 1:
|
|
k, v = sps[0], ""
|
|
else:
|
|
k, v = sps
|
|
if k in data:
|
|
raise RuntimeError(f"{k} is duplicated ({path}:{linenum})")
|
|
data[k] = v
|
|
return data
|
|
|
|
|
|
def load_num_sequence_text(path: Union[Path, str], loader_type: str="csv_int"
|
|
) -> Dict[str, List[Union[float, int]]]:
|
|
"""Read a text file indicating sequences of number
|
|
|
|
Examples:
|
|
key1 1 2 3
|
|
key2 34 5 6
|
|
|
|
>>> d = load_num_sequence_text('text')
|
|
>>> np.testing.assert_array_equal(d["key1"], np.array([1, 2, 3]))
|
|
"""
|
|
if loader_type == "text_int":
|
|
delimiter = " "
|
|
dtype = int
|
|
elif loader_type == "text_float":
|
|
delimiter = " "
|
|
dtype = float
|
|
elif loader_type == "csv_int":
|
|
delimiter = ","
|
|
dtype = int
|
|
elif loader_type == "csv_float":
|
|
delimiter = ","
|
|
dtype = float
|
|
else:
|
|
raise ValueError(f"Not supported loader_type={loader_type}")
|
|
|
|
# path looks like:
|
|
# utta 1,0
|
|
# uttb 3,4,5
|
|
# -> return {'utta': np.ndarray([1, 0]),
|
|
# 'uttb': np.ndarray([3, 4, 5])}
|
|
d = read_2column_text(path)
|
|
# Using for-loop instead of dict-comprehension for debuggability
|
|
retval = {}
|
|
for k, v in d.items():
|
|
try:
|
|
retval[k] = [dtype(i) for i in v.split(delimiter)]
|
|
except TypeError:
|
|
print(f'Error happened with path="{path}", id="{k}", value="{v}"')
|
|
raise
|
|
return retval
|
|
|
|
|
|
def is_chinese(ch):
|
|
if u'\u4e00' <= ch <= u'\u9fff':
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
|
|
def get_voc_out(mel):
|
|
# vocoder
|
|
args = parse_args()
|
|
with open(args.voc_config) as f:
|
|
voc_config = CfgNode(yaml.safe_load(f))
|
|
voc_inference = get_voc_inference(
|
|
voc=args.voc,
|
|
voc_config=voc_config,
|
|
voc_ckpt=args.voc_ckpt,
|
|
voc_stat=args.voc_stat)
|
|
|
|
with paddle.no_grad():
|
|
wav = voc_inference(mel)
|
|
return np.squeeze(wav)
|
|
|
|
|
|
def eval_durs(phns, target_lang="chinese", fs=24000, hop_length=300):
|
|
args = parse_args()
|
|
|
|
if target_lang == 'english':
|
|
args.am = "fastspeech2_ljspeech"
|
|
args.am_config = "download/fastspeech2_nosil_ljspeech_ckpt_0.5/default.yaml"
|
|
args.am_ckpt = "download/fastspeech2_nosil_ljspeech_ckpt_0.5/snapshot_iter_100000.pdz"
|
|
args.am_stat = "download/fastspeech2_nosil_ljspeech_ckpt_0.5/speech_stats.npy"
|
|
args.phones_dict = "download/fastspeech2_nosil_ljspeech_ckpt_0.5/phone_id_map.txt"
|
|
|
|
elif target_lang == 'chinese':
|
|
args.am = "fastspeech2_csmsc"
|
|
args.am_config = "download/fastspeech2_conformer_baker_ckpt_0.5/conformer.yaml"
|
|
args.am_ckpt = "download/fastspeech2_conformer_baker_ckpt_0.5/snapshot_iter_76000.pdz"
|
|
args.am_stat = "download/fastspeech2_conformer_baker_ckpt_0.5/speech_stats.npy"
|
|
args.phones_dict = "download/fastspeech2_conformer_baker_ckpt_0.5/phone_id_map.txt"
|
|
|
|
if args.ngpu == 0:
|
|
paddle.set_device("cpu")
|
|
elif args.ngpu > 0:
|
|
paddle.set_device("gpu")
|
|
else:
|
|
print("ngpu should >= 0 !")
|
|
|
|
# Init body.
|
|
with open(args.am_config) as f:
|
|
am_config = CfgNode(yaml.safe_load(f))
|
|
|
|
am_inference, am = get_am_inference(
|
|
am=args.am,
|
|
am_config=am_config,
|
|
am_ckpt=args.am_ckpt,
|
|
am_stat=args.am_stat,
|
|
phones_dict=args.phones_dict,
|
|
tones_dict=args.tones_dict,
|
|
speaker_dict=args.speaker_dict,
|
|
return_am=True)
|
|
|
|
vocab_phones = {}
|
|
with open(args.phones_dict, "r") as f:
|
|
phn_id = [line.strip().split() for line in f.readlines()]
|
|
for tone, id in phn_id:
|
|
vocab_phones[tone] = int(id)
|
|
vocab_size = len(vocab_phones)
|
|
phonemes = [phn if phn in vocab_phones else "sp" for phn in phns]
|
|
|
|
phone_ids = [vocab_phones[item] for item in phonemes]
|
|
phone_ids.append(vocab_size - 1)
|
|
phone_ids = paddle.to_tensor(np.array(phone_ids, np.int64))
|
|
_, d_outs, _, _ = am.inference(phone_ids, spk_id=None, spk_emb=None)
|
|
pre_d_outs = d_outs
|
|
phu_durs_new = pre_d_outs * hop_length / fs
|
|
phu_durs_new = phu_durs_new.tolist()[:-1]
|
|
return phu_durs_new
|