You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
381 lines
14 KiB
381 lines
14 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import List
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
|
|
from paddlespeech.t2s.modules.nets_utils import initialize
|
|
from paddlespeech.t2s.modules.predictor.length_regulator import LengthRegulator
|
|
from paddlespeech.t2s.modules.transformer.embedding import ScaledPositionalEncoding
|
|
|
|
|
|
class ResidualBlock(nn.Layer):
|
|
def __init__(self,
|
|
channels: int=128,
|
|
kernel_size: int=3,
|
|
dilation: int=3,
|
|
n: int=2):
|
|
"""SpeedySpeech encoder module.
|
|
Args:
|
|
channels (int, optional): Feature size of the residual output(and also the input).
|
|
kernel_size (int, optional): Kernel size of the 1D convolution.
|
|
dilation (int, optional): Dilation of the 1D convolution.
|
|
n (int): Number of blocks.
|
|
"""
|
|
|
|
super().__init__()
|
|
total_pad = (dilation * (kernel_size - 1))
|
|
begin = total_pad // 2
|
|
end = total_pad - begin
|
|
# remove padding='same' here, cause onnx don't support dilation + 'same' padding
|
|
blocks = [
|
|
nn.Sequential(
|
|
nn.Conv1D(
|
|
channels,
|
|
channels,
|
|
kernel_size,
|
|
dilation=dilation,
|
|
# make sure output T == input T
|
|
padding=((0, 0), (0, 0), (begin, end))),
|
|
nn.ReLU(),
|
|
nn.BatchNorm1D(channels), ) for _ in range(n)
|
|
]
|
|
self.blocks = nn.Sequential(*blocks)
|
|
|
|
def forward(self, x: paddle.Tensor):
|
|
"""Calculate forward propagation.
|
|
Args:
|
|
x(Tensor): Batch of input sequences (B, hidden_size, Tmax).
|
|
Returns:
|
|
Tensor: The residual output (B, hidden_size, Tmax).
|
|
"""
|
|
return x + self.blocks(x)
|
|
|
|
|
|
class TextEmbedding(nn.Layer):
|
|
def __init__(self,
|
|
vocab_size: int,
|
|
embedding_size: int,
|
|
tone_vocab_size: int=None,
|
|
tone_embedding_size: int=None,
|
|
padding_idx: int=None,
|
|
tone_padding_idx: int=None,
|
|
concat: bool=False):
|
|
super().__init__()
|
|
self.text_embedding = nn.Embedding(vocab_size, embedding_size,
|
|
padding_idx)
|
|
if tone_vocab_size:
|
|
tone_embedding_size = tone_embedding_size or embedding_size
|
|
if tone_embedding_size != embedding_size and not concat:
|
|
raise ValueError(
|
|
"embedding size != tone_embedding size, only conat is avaiable."
|
|
)
|
|
self.tone_embedding = nn.Embedding(
|
|
tone_vocab_size, tone_embedding_size, tone_padding_idx)
|
|
self.concat = concat
|
|
|
|
def forward(self, text: paddle.Tensor, tone: paddle.Tensor=None):
|
|
"""Calculate forward propagation.
|
|
Args:
|
|
text(Tensor(int64)): Batch of padded token ids (B, Tmax).
|
|
tones(Tensor, optional(int64)): Batch of padded tone ids (B, Tmax).
|
|
Returns:
|
|
Tensor: The residual output (B, Tmax, embedding_size).
|
|
"""
|
|
|
|
text_embed = self.text_embedding(text)
|
|
if tone is None:
|
|
return text_embed
|
|
tone_embed = self.tone_embedding(tone)
|
|
if self.concat:
|
|
embed = paddle.concat([text_embed, tone_embed], -1)
|
|
else:
|
|
embed = text_embed + tone_embed
|
|
return embed
|
|
|
|
|
|
class SpeedySpeechEncoder(nn.Layer):
|
|
"""SpeedySpeech encoder module.
|
|
Args:
|
|
vocab_size (int): Dimension of the inputs.
|
|
tone_size (Optional[int]): Number of tones.
|
|
hidden_size (int): Number of encoder hidden units.
|
|
kernel_size (int): Kernel size of encoder.
|
|
dilations (List[int]): Dilations of encoder.
|
|
spk_num (Optional[int]): Number of speakers.
|
|
"""
|
|
|
|
def __init__(self,
|
|
vocab_size: int,
|
|
tone_size: int,
|
|
hidden_size: int=128,
|
|
kernel_size: int=3,
|
|
dilations: List[int]=[1, 3, 9, 27, 1, 3, 9, 27, 1, 1],
|
|
spk_num=None):
|
|
|
|
super().__init__()
|
|
self.embedding = TextEmbedding(
|
|
vocab_size,
|
|
hidden_size,
|
|
tone_size,
|
|
padding_idx=0,
|
|
tone_padding_idx=0)
|
|
|
|
if spk_num:
|
|
self.spk_emb = nn.Embedding(
|
|
num_embeddings=spk_num,
|
|
embedding_dim=hidden_size,
|
|
padding_idx=0)
|
|
else:
|
|
self.spk_emb = None
|
|
|
|
self.prenet = nn.Sequential(
|
|
nn.Linear(hidden_size, hidden_size),
|
|
nn.ReLU(), )
|
|
res_blocks = [
|
|
ResidualBlock(hidden_size, kernel_size, d, n=2) for d in dilations
|
|
]
|
|
self.res_blocks = nn.Sequential(*res_blocks)
|
|
|
|
self.postnet1 = nn.Sequential(nn.Linear(hidden_size, hidden_size))
|
|
self.postnet2 = nn.Sequential(
|
|
nn.ReLU(),
|
|
nn.BatchNorm1D(hidden_size), )
|
|
self.linear = nn.Linear(hidden_size, hidden_size)
|
|
|
|
def forward(self,
|
|
text: paddle.Tensor,
|
|
tones: paddle.Tensor,
|
|
spk_id: paddle.Tensor=None):
|
|
"""Encoder input sequence.
|
|
Args:
|
|
text(Tensor(int64)): Batch of padded token ids (B, Tmax).
|
|
tones(Tensor, optional(int64)): Batch of padded tone ids (B, Tmax).
|
|
spk_id(Tnesor, optional(int64)): Batch of speaker ids (B,)
|
|
|
|
Returns:
|
|
Tensor: Output tensor (B, Tmax, hidden_size).
|
|
"""
|
|
embedding = self.embedding(text, tones)
|
|
if self.spk_emb:
|
|
embedding += self.spk_emb(spk_id).unsqueeze(1)
|
|
embedding = self.prenet(embedding)
|
|
x = self.res_blocks(embedding.transpose([0, 2, 1])).transpose([0, 2, 1])
|
|
# (B, T, dim)
|
|
x = embedding + self.postnet1(x)
|
|
x = self.postnet2(x.transpose([0, 2, 1])).transpose([0, 2, 1])
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
class DurationPredictor(nn.Layer):
|
|
def __init__(self, hidden_size: int=128):
|
|
super().__init__()
|
|
self.layers = nn.Sequential(
|
|
ResidualBlock(hidden_size, 4, 1, n=1),
|
|
ResidualBlock(hidden_size, 3, 1, n=1),
|
|
ResidualBlock(hidden_size, 1, 1, n=1), )
|
|
self.linear = nn.Linear(hidden_size, 1)
|
|
|
|
def forward(self, x: paddle.Tensor):
|
|
"""Calculate forward propagation.
|
|
Args:
|
|
x(Tensor): Batch of input sequences (B, Tmax, hidden_size).
|
|
|
|
Returns:
|
|
Tensor: Batch of predicted durations in log domain (B, Tmax).
|
|
"""
|
|
x = self.layers(x.transpose([0, 2, 1])).transpose([0, 2, 1])
|
|
x = self.linear(x)
|
|
return paddle.squeeze(x, -1)
|
|
|
|
|
|
class SpeedySpeechDecoder(nn.Layer):
|
|
def __init__(self,
|
|
hidden_size: int=128,
|
|
output_size: int=80,
|
|
kernel_size: int=3,
|
|
dilations: List[int]=[
|
|
1, 3, 9, 27, 1, 3, 9, 27, 1, 3, 9, 27, 1, 3, 9, 27, 1, 1
|
|
]):
|
|
"""SpeedySpeech decoder module.
|
|
Args:
|
|
hidden_size (int): Number of decoder hidden units.
|
|
kernel_size (int): Kernel size of decoder.
|
|
output_size (int): Dimension of the outputs.
|
|
dilations (List[int]): Dilations of decoder.
|
|
"""
|
|
super().__init__()
|
|
res_blocks = [
|
|
ResidualBlock(hidden_size, kernel_size, d, n=2) for d in dilations
|
|
]
|
|
self.res_blocks = nn.Sequential(*res_blocks)
|
|
|
|
self.postnet1 = nn.Sequential(nn.Linear(hidden_size, hidden_size))
|
|
self.postnet2 = ResidualBlock(hidden_size, kernel_size, 1, n=2)
|
|
self.linear = nn.Linear(hidden_size, output_size)
|
|
|
|
def forward(self, x):
|
|
"""Decoder input sequence.
|
|
Args:
|
|
x(Tensor): Input tensor (B, time, hidden_size).
|
|
|
|
Returns:
|
|
Tensor: Output tensor (B, time, output_size).
|
|
"""
|
|
xx = self.res_blocks(x.transpose([0, 2, 1])).transpose([0, 2, 1])
|
|
x = x + self.postnet1(xx)
|
|
x = self.postnet2(x.transpose([0, 2, 1])).transpose([0, 2, 1])
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
|
|
class SpeedySpeech(nn.Layer):
|
|
def __init__(
|
|
self,
|
|
vocab_size,
|
|
encoder_hidden_size: int=128,
|
|
encoder_kernel_size: int=3,
|
|
encoder_dilations: List[int]=[1, 3, 9, 27, 1, 3, 9, 27, 1, 1],
|
|
duration_predictor_hidden_size: int=128,
|
|
decoder_hidden_size: int=128,
|
|
decoder_output_size: int=80,
|
|
decoder_kernel_size: int=3,
|
|
decoder_dilations: List[
|
|
int]=[1, 3, 9, 27, 1, 3, 9, 27, 1, 3, 9, 27, 1, 3, 9, 27, 1, 1],
|
|
tone_size: int=None,
|
|
spk_num: int=None,
|
|
init_type: str="xavier_uniform",
|
|
positional_dropout_rate: int=0.1):
|
|
"""Initialize SpeedySpeech module.
|
|
Args:
|
|
vocab_size (int): Dimension of the inputs.
|
|
encoder_hidden_size (int): Number of encoder hidden units.
|
|
encoder_kernel_size (int): Kernel size of encoder.
|
|
encoder_dilations (List[int]): Dilations of encoder.
|
|
duration_predictor_hidden_size (int): Number of duration predictor hidden units.
|
|
decoder_hidden_size (int): Number of decoder hidden units.
|
|
decoder_kernel_size (int): Kernel size of decoder.
|
|
decoder_dilations (List[int]): Dilations of decoder.
|
|
decoder_output_size (int): Dimension of the outputs.
|
|
tone_size (Optional[int]): Number of tones.
|
|
spk_num (Optional[int]): Number of speakers.
|
|
init_type (str): How to initialize transformer parameters.
|
|
|
|
"""
|
|
super().__init__()
|
|
|
|
# initialize parameters
|
|
initialize(self, init_type)
|
|
|
|
encoder = SpeedySpeechEncoder(vocab_size, tone_size,
|
|
encoder_hidden_size, encoder_kernel_size,
|
|
encoder_dilations, spk_num)
|
|
duration_predictor = DurationPredictor(duration_predictor_hidden_size)
|
|
decoder = SpeedySpeechDecoder(decoder_hidden_size, decoder_output_size,
|
|
decoder_kernel_size, decoder_dilations)
|
|
self.position_enc = ScaledPositionalEncoding(encoder_hidden_size,
|
|
positional_dropout_rate)
|
|
|
|
self.encoder = encoder
|
|
self.duration_predictor = duration_predictor
|
|
self.decoder = decoder
|
|
# define length regulator
|
|
self.length_regulator = LengthRegulator()
|
|
|
|
nn.initializer.set_global_initializer(None)
|
|
|
|
def forward(self,
|
|
text: paddle.Tensor,
|
|
tones: paddle.Tensor,
|
|
durations: paddle.Tensor,
|
|
spk_id: paddle.Tensor=None):
|
|
"""Calculate forward propagation.
|
|
Args:
|
|
text(Tensor(int64)): Batch of padded token ids (B, Tmax).
|
|
durations(Tensor(int64)): Batch of padded durations (B, Tmax).
|
|
tones(Tensor, optional(int64)): Batch of padded tone ids (B, Tmax).
|
|
spk_id(Tnesor, optional(int64)): Batch of speaker ids (B,)
|
|
|
|
Returns:
|
|
Tensor: Output tensor (B, T_frames, decoder_output_size).
|
|
Tensor: Predicted durations (B, Tmax).
|
|
"""
|
|
# input of embedding must be int64
|
|
text = paddle.cast(text, 'int64')
|
|
tones = paddle.cast(tones, 'int64')
|
|
if spk_id is not None:
|
|
spk_id = paddle.cast(spk_id, 'int64')
|
|
durations = paddle.cast(durations, 'int64')
|
|
encodings = self.encoder(text, tones, spk_id)
|
|
pred_durations = self.duration_predictor(encodings.detach())
|
|
# expand encodings
|
|
durations_to_expand = durations
|
|
encodings = self.length_regulator(encodings, durations_to_expand)
|
|
encodings = self.position_enc(encodings)
|
|
# decode
|
|
decoded = self.decoder(encodings)
|
|
return decoded, pred_durations
|
|
|
|
def inference(self,
|
|
text: paddle.Tensor,
|
|
tones: paddle.Tensor=None,
|
|
durations: paddle.Tensor=None,
|
|
spk_id: paddle.Tensor=None):
|
|
"""Generate the sequence of features given the sequences of characters.
|
|
Args:
|
|
text(Tensor(int64)): Input sequence of characters (T,).
|
|
tones(Tensor, optional(int64)): Batch of padded tone ids (T, ).
|
|
durations(Tensor, optional (int64)): Groundtruth of duration (T,).
|
|
spk_id(Tensor, optional(int64), optional): spk ids (1,). (Default value = None)
|
|
|
|
Returns:
|
|
Tensor: logmel (T, decoder_output_size).
|
|
"""
|
|
# input of embedding must be int64
|
|
text = paddle.cast(text, 'int64')
|
|
text = text.unsqueeze(0)
|
|
if tones is not None:
|
|
tones = paddle.cast(tones, 'int64')
|
|
tones = tones.unsqueeze(0)
|
|
|
|
encodings = self.encoder(text, tones, spk_id)
|
|
|
|
if durations is None:
|
|
# (1, T)
|
|
pred_durations = self.duration_predictor(encodings)
|
|
durations_to_expand = paddle.round(pred_durations.exp())
|
|
durations_to_expand = durations_to_expand.astype(paddle.int64)
|
|
else:
|
|
durations_to_expand = durations
|
|
encodings = self.length_regulator(
|
|
encodings, durations_to_expand, is_inference=True)
|
|
encodings = self.position_enc(encodings)
|
|
decoded = self.decoder(encodings)
|
|
return decoded[0]
|
|
|
|
|
|
class SpeedySpeechInference(nn.Layer):
|
|
def __init__(self, normalizer, speedyspeech_model):
|
|
super().__init__()
|
|
self.normalizer = normalizer
|
|
self.acoustic_model = speedyspeech_model
|
|
|
|
def forward(self, phones, tones, spk_id=None, durations=None):
|
|
normalized_mel = self.acoustic_model.inference(
|
|
phones, tones, durations=durations, spk_id=spk_id)
|
|
logmel = self.normalizer.inverse(normalized_mel)
|
|
return logmel
|