You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
112 lines
3.6 KiB
112 lines
3.6 KiB
import os
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
from paddlelite.lite import create_paddle_predictor
|
|
from paddlelite.lite import MobileConfig
|
|
|
|
from .syn_utils import run_frontend
|
|
|
|
|
|
# Paddle-Lite
|
|
def get_lite_predictor(model_dir: Optional[os.PathLike]=None,
|
|
model_file: Optional[os.PathLike]=None,
|
|
cpu_threads: int=1):
|
|
config = MobileConfig()
|
|
config.set_model_from_file(str(Path(model_dir) / model_file))
|
|
predictor = create_paddle_predictor(config)
|
|
return predictor
|
|
|
|
|
|
def get_lite_am_output(
|
|
input: str,
|
|
am_predictor,
|
|
am: str,
|
|
frontend: object,
|
|
lang: str='zh',
|
|
merge_sentences: bool=True,
|
|
speaker_dict: Optional[os.PathLike]=None,
|
|
spk_id: int=0, ):
|
|
am_name = am[:am.rindex('_')]
|
|
am_dataset = am[am.rindex('_') + 1:]
|
|
get_spk_id = False
|
|
get_tone_ids = False
|
|
if am_name == 'speedyspeech':
|
|
get_tone_ids = True
|
|
if am_dataset in {"aishell3", "vctk", "mix"} and speaker_dict:
|
|
get_spk_id = True
|
|
spk_id = np.array([spk_id])
|
|
|
|
frontend_dict = run_frontend(
|
|
frontend=frontend,
|
|
text=input,
|
|
merge_sentences=merge_sentences,
|
|
get_tone_ids=get_tone_ids,
|
|
lang=lang)
|
|
|
|
if get_tone_ids:
|
|
tone_ids = frontend_dict['tone_ids']
|
|
tones = tone_ids[0].numpy()
|
|
tones_handle = am_predictor.get_input(1)
|
|
tones_handle.from_numpy(tones)
|
|
|
|
if get_spk_id:
|
|
spk_id_handle = am_predictor.get_input(1)
|
|
spk_id_handle.from_numpy(spk_id)
|
|
phone_ids = frontend_dict['phone_ids']
|
|
phones = phone_ids[0].numpy()
|
|
phones_handle = am_predictor.get_input(0)
|
|
phones_handle.from_numpy(phones)
|
|
am_predictor.run()
|
|
am_output_handle = am_predictor.get_output(0)
|
|
am_output_data = am_output_handle.numpy()
|
|
return am_output_data
|
|
|
|
|
|
def get_lite_voc_output(voc_predictor, input):
|
|
mel_handle = voc_predictor.get_input(0)
|
|
mel_handle.from_numpy(input)
|
|
voc_predictor.run()
|
|
voc_output_handle = voc_predictor.get_output(0)
|
|
wav = voc_output_handle.numpy()
|
|
return wav
|
|
|
|
|
|
def get_lite_am_sublayer_output(am_sublayer_predictor, input):
|
|
input_handle = am_sublayer_predictor.get_input(0)
|
|
input_handle.from_numpy(input)
|
|
|
|
am_sublayer_predictor.run()
|
|
am_sublayer_handle = am_sublayer_predictor.get_output(0)
|
|
am_sublayer_output = am_sublayer_handle.numpy()
|
|
return am_sublayer_output
|
|
|
|
|
|
def get_lite_streaming_am_output(input: str,
|
|
am_encoder_infer_predictor,
|
|
am_decoder_predictor,
|
|
am_postnet_predictor,
|
|
frontend,
|
|
lang: str='zh',
|
|
merge_sentences: bool=True):
|
|
get_tone_ids = False
|
|
frontend_dict = run_frontend(
|
|
frontend=frontend,
|
|
text=input,
|
|
merge_sentences=merge_sentences,
|
|
get_tone_ids=get_tone_ids,
|
|
lang=lang)
|
|
phone_ids = frontend_dict['phone_ids']
|
|
phones = phone_ids[0].numpy()
|
|
am_encoder_infer_output = get_lite_am_sublayer_output(
|
|
am_encoder_infer_predictor, input=phones)
|
|
am_decoder_output = get_lite_am_sublayer_output(
|
|
am_decoder_predictor, input=am_encoder_infer_output)
|
|
am_postnet_output = get_lite_am_sublayer_output(
|
|
am_postnet_predictor, input=np.transpose(am_decoder_output, (0, 2, 1)))
|
|
am_output_data = am_decoder_output + np.transpose(am_postnet_output,
|
|
(0, 2, 1))
|
|
normalized_mel = am_output_data[0]
|
|
return normalized_mel
|