You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deploy/demo_server.py

252 lines
9.4 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Server-end for the ASR demo."""
import os
import time
import random
import argparse
import functools
from time import gmtime, strftime
import SocketServer
import struct
import wave
import paddle.fluid as fluid
import numpy as np
import _init_paths
from data_utils.data import DataGenerator
from model_utils.model import DeepSpeech2Model
from data_utils.utility import read_manifest
from utils.utility import add_arguments, print_arguments
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('host_port', int, 8086, "Server's IP port.")
add_arg('beam_size', int, 500, "Beam search width.")
add_arg('num_conv_layers', int, 2, "# of convolution layers.")
add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.")
add_arg('alpha', float, 2.5, "Coef of LM for beam search.")
add_arg('beta', float, 0.3, "Coef of WC for beam search.")
add_arg('cutoff_prob', float, 1.0, "Cutoff probability for pruning.")
add_arg('cutoff_top_n', int, 40, "Cutoff number for pruning.")
add_arg('use_gru', bool, False, "Use GRUs instead of simple RNNs.")
add_arg('use_gpu', bool, True, "Use GPU or not.")
add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across "
"bi-directional RNNs. Not for GRU.")
add_arg('host_ip', str,
'localhost',
"Server's IP address.")
add_arg('speech_save_dir', str,
'demo_cache',
"Directory to save demo audios.")
add_arg('warmup_manifest', str,
'data/librispeech/manifest.test-clean',
"Filepath of manifest to warm up.")
add_arg('mean_std_path', str,
'data/librispeech/mean_std.npz',
"Filepath of normalizer's mean & std.")
add_arg('vocab_path', str,
'data/librispeech/eng_vocab.txt',
"Filepath of vocabulary.")
add_arg('model_path', str,
'./checkpoints/libri/step_final',
"If None, the training starts from scratch, "
"otherwise, it resumes from the pre-trained model.")
add_arg('lang_model_path', str,
'lm/data/common_crawl_00.prune01111.trie.klm',
"Filepath for language model.")
add_arg('decoding_method', str,
'ctc_beam_search',
"Decoding method. Options: ctc_beam_search, ctc_greedy",
choices = ['ctc_beam_search', 'ctc_greedy'])
add_arg('specgram_type', str,
'linear',
"Audio feature type. Options: linear, mfcc.",
choices=['linear', 'mfcc'])
# yapf: disable
args = parser.parse_args()
class AsrTCPServer(SocketServer.TCPServer):
"""The ASR TCP Server."""
def __init__(self,
server_address,
RequestHandlerClass,
speech_save_dir,
audio_process_handler,
bind_and_activate=True):
self.speech_save_dir = speech_save_dir
self.audio_process_handler = audio_process_handler
SocketServer.TCPServer.__init__(
self, server_address, RequestHandlerClass, bind_and_activate=True)
class AsrRequestHandler(SocketServer.BaseRequestHandler):
"""The ASR request handler."""
def handle(self):
# receive data through TCP socket
chunk = self.request.recv(1024)
target_len = struct.unpack('>i', chunk[:4])[0]
data = chunk[4:]
while len(data) < target_len:
chunk = self.request.recv(1024)
data += chunk
# write to file
filename = self._write_to_file(data)
print("Received utterance[length=%d] from %s, saved to %s." %
(len(data), self.client_address[0], filename))
start_time = time.time()
transcript = self.server.audio_process_handler(filename)
finish_time = time.time()
print("Response Time: %f, Transcript: %s" %
(finish_time - start_time, transcript))
self.request.sendall(transcript.encode('utf-8'))
def _write_to_file(self, data):
# prepare save dir and filename
if not os.path.exists(self.server.speech_save_dir):
os.mkdir(self.server.speech_save_dir)
timestamp = strftime("%Y%m%d%H%M%S", gmtime())
out_filename = os.path.join(
self.server.speech_save_dir,
timestamp + "_" + self.client_address[0] + ".wav")
# write to wav file
file = wave.open(out_filename, 'wb')
file.setnchannels(1)
file.setsampwidth(4)
file.setframerate(16000)
file.writeframes(data)
file.close()
return out_filename
def warm_up_test(audio_process_handler,
manifest_path,
num_test_cases,
random_seed=0):
"""Warming-up test."""
manifest = read_manifest(manifest_path)
rng = random.Random(random_seed)
samples = rng.sample(manifest, num_test_cases)
for idx, sample in enumerate(samples):
print("Warm-up Test Case %d: %s", idx, sample['audio_filepath'])
start_time = time.time()
transcript = audio_process_handler(sample['audio_filepath'])
finish_time = time.time()
print("Response Time: %f, Transcript: %s" %
(finish_time - start_time, transcript))
def start_server():
"""Start the ASR server"""
# prepare data generator
if args.use_gpu:
place = fluid.CUDAPlace(0)
else:
place = fluid.CPUPlace()
data_generator = DataGenerator(
vocab_filepath=args.vocab_path,
mean_std_filepath=args.mean_std_path,
augmentation_config='{}',
specgram_type=args.specgram_type,
keep_transcription_text=True,
place = place,
is_training = False)
# prepare ASR model
ds2_model = DeepSpeech2Model(
vocab_size=data_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_layer_size=args.rnn_layer_size,
use_gru=args.use_gru,
init_from_pretrained_model=args.model_path,
place=place,
share_rnn_weights=args.share_rnn_weights)
vocab_list = [chars for chars in data_generator.vocab_list]
if args.decoding_method == "ctc_beam_search":
ds2_model.init_ext_scorer(args.alpha, args.beta, args.lang_model_path,
vocab_list)
# prepare ASR inference handler
def file_to_transcript(filename):
feature = data_generator.process_utterance(filename, "")
audio_len = feature[0].shape[1]
mask_shape0 = (feature[0].shape[0] - 1) // 2 + 1
mask_shape1 = (feature[0].shape[1] - 1) // 3 + 1
mask_max_len = (audio_len - 1) // 3 + 1
mask_ones = np.ones((mask_shape0, mask_shape1))
mask_zeros = np.zeros((mask_shape0, mask_max_len - mask_shape1))
mask = np.repeat(
np.reshape(
np.concatenate((mask_ones, mask_zeros), axis=1),
(1, mask_shape0, mask_max_len)),
32,
axis=0)
feature = (np.array([feature[0]]).astype('float32'),
None,
np.array([audio_len]).astype('int64').reshape([-1,1]),
np.array([mask]).astype('float32'))
probs_split = ds2_model.infer_batch_probs(
infer_data=feature,
feeding_dict=data_generator.feeding)
if args.decoding_method == "ctc_greedy":
result_transcript = ds2_model.decode_batch_greedy(
probs_split=probs_split,
vocab_list=vocab_list)
else:
result_transcript = ds2_model.decode_batch_beam_search(
probs_split=probs_split,
beam_alpha=args.alpha,
beam_beta=args.beta,
beam_size=args.beam_size,
cutoff_prob=args.cutoff_prob,
cutoff_top_n=args.cutoff_top_n,
vocab_list=vocab_list,
num_processes=1)
return result_transcript[0]
# warming up with utterrances sampled from Librispeech
print('-----------------------------------------------------------')
print('Warming up ...')
warm_up_test(
audio_process_handler=file_to_transcript,
manifest_path=args.warmup_manifest,
num_test_cases=3)
print('-----------------------------------------------------------')
# start the server
server = AsrTCPServer(
server_address=(args.host_ip, args.host_port),
RequestHandlerClass=AsrRequestHandler,
speech_save_dir=args.speech_save_dir,
audio_process_handler=file_to_transcript)
print("ASR Server Started.")
server.serve_forever()
def main():
print_arguments(args)
start_server()
if __name__ == "__main__":
main()