You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
207 lines
6.9 KiB
207 lines
6.9 KiB
#include "ctc_beam_search_decoder.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <utility>
|
|
|
|
#include "ThreadPool.h"
|
|
#include "fst/fstlib.h"
|
|
#include "fst/log.h"
|
|
|
|
#include "decoder_utils.h"
|
|
#include "path_trie.h"
|
|
|
|
using FSTMATCH = fst::SortedMatcher<fst::StdVectorFst>;
|
|
|
|
std::vector<std::pair<double, std::string>> ctc_beam_search_decoder(
|
|
const std::vector<std::vector<double>> &probs_seq,
|
|
size_t beam_size,
|
|
std::vector<std::string> vocabulary,
|
|
double cutoff_prob,
|
|
size_t cutoff_top_n,
|
|
Scorer *ext_scorer) {
|
|
// dimension check
|
|
size_t num_time_steps = probs_seq.size();
|
|
for (size_t i = 0; i < num_time_steps; ++i) {
|
|
VALID_CHECK_EQ(probs_seq[i].size(),
|
|
vocabulary.size() + 1,
|
|
"The shape of probs_seq does not match with "
|
|
"the shape of the vocabulary");
|
|
}
|
|
|
|
// assign blank id
|
|
size_t blank_id = vocabulary.size();
|
|
|
|
// assign space id
|
|
std::vector<std::string>::iterator it =
|
|
std::find(vocabulary.begin(), vocabulary.end(), " ");
|
|
int space_id = it - vocabulary.begin();
|
|
// if no space in vocabulary
|
|
if ((size_t)space_id >= vocabulary.size()) {
|
|
space_id = -2;
|
|
}
|
|
|
|
// init prefixes' root
|
|
PathTrie root;
|
|
root.score = root.log_prob_b_prev = 0.0;
|
|
std::vector<PathTrie *> prefixes;
|
|
prefixes.push_back(&root);
|
|
|
|
if (ext_scorer != nullptr && !ext_scorer->is_character_based()) {
|
|
auto fst_dict = static_cast<fst::StdVectorFst *>(ext_scorer->dictionary);
|
|
fst::StdVectorFst *dict_ptr = fst_dict->Copy(true);
|
|
root.set_dictionary(dict_ptr);
|
|
auto matcher = std::make_shared<FSTMATCH>(*dict_ptr, fst::MATCH_INPUT);
|
|
root.set_matcher(matcher);
|
|
}
|
|
|
|
// prefix search over time
|
|
for (size_t time_step = 0; time_step < num_time_steps; ++time_step) {
|
|
auto &prob = probs_seq[time_step];
|
|
|
|
float min_cutoff = -NUM_FLT_INF;
|
|
bool full_beam = false;
|
|
if (ext_scorer != nullptr) {
|
|
size_t num_prefixes = std::min(prefixes.size(), beam_size);
|
|
std::sort(
|
|
prefixes.begin(), prefixes.begin() + num_prefixes, prefix_compare);
|
|
min_cutoff = prefixes[num_prefixes - 1]->score +
|
|
std::log(prob[blank_id]) - std::max(0.0, ext_scorer->beta);
|
|
full_beam = (num_prefixes == beam_size);
|
|
}
|
|
|
|
std::vector<std::pair<size_t, float>> log_prob_idx =
|
|
get_pruned_log_probs(prob, cutoff_prob, cutoff_top_n);
|
|
// loop over chars
|
|
for (size_t index = 0; index < log_prob_idx.size(); index++) {
|
|
auto c = log_prob_idx[index].first;
|
|
auto log_prob_c = log_prob_idx[index].second;
|
|
|
|
for (size_t i = 0; i < prefixes.size() && i < beam_size; ++i) {
|
|
auto prefix = prefixes[i];
|
|
if (full_beam && log_prob_c + prefix->score < min_cutoff) {
|
|
break;
|
|
}
|
|
// blank
|
|
if (c == blank_id) {
|
|
prefix->log_prob_b_cur =
|
|
log_sum_exp(prefix->log_prob_b_cur, log_prob_c + prefix->score);
|
|
continue;
|
|
}
|
|
// repeated character
|
|
if (c == prefix->character) {
|
|
prefix->log_prob_nb_cur = log_sum_exp(
|
|
prefix->log_prob_nb_cur, log_prob_c + prefix->log_prob_nb_prev);
|
|
}
|
|
// get new prefix
|
|
auto prefix_new = prefix->get_path_trie(c);
|
|
|
|
if (prefix_new != nullptr) {
|
|
float log_p = -NUM_FLT_INF;
|
|
|
|
if (c == prefix->character &&
|
|
prefix->log_prob_b_prev > -NUM_FLT_INF) {
|
|
log_p = log_prob_c + prefix->log_prob_b_prev;
|
|
} else if (c != prefix->character) {
|
|
log_p = log_prob_c + prefix->score;
|
|
}
|
|
|
|
// language model scoring
|
|
if (ext_scorer != nullptr &&
|
|
(c == space_id || ext_scorer->is_character_based())) {
|
|
PathTrie *prefix_toscore = nullptr;
|
|
// skip scoring the space
|
|
if (ext_scorer->is_character_based()) {
|
|
prefix_toscore = prefix_new;
|
|
} else {
|
|
prefix_toscore = prefix;
|
|
}
|
|
|
|
double score = 0.0;
|
|
std::vector<std::string> ngram;
|
|
ngram = ext_scorer->make_ngram(prefix_toscore);
|
|
score = ext_scorer->get_log_cond_prob(ngram) * ext_scorer->alpha;
|
|
log_p += score;
|
|
log_p += ext_scorer->beta;
|
|
}
|
|
prefix_new->log_prob_nb_cur =
|
|
log_sum_exp(prefix_new->log_prob_nb_cur, log_p);
|
|
}
|
|
} // end of loop over prefix
|
|
} // end of loop over chars
|
|
|
|
prefixes.clear();
|
|
// update log probs
|
|
root.iterate_to_vec(prefixes);
|
|
|
|
// only preserve top beam_size prefixes
|
|
if (prefixes.size() >= beam_size) {
|
|
std::nth_element(prefixes.begin(),
|
|
prefixes.begin() + beam_size,
|
|
prefixes.end(),
|
|
prefix_compare);
|
|
for (size_t i = beam_size; i < prefixes.size(); ++i) {
|
|
prefixes[i]->remove();
|
|
}
|
|
}
|
|
} // end of loop over time
|
|
|
|
// compute aproximate ctc score as the return score, without affecting the
|
|
// return order of decoding result. To delete when decoder gets stable.
|
|
for (size_t i = 0; i < beam_size && i < prefixes.size(); ++i) {
|
|
double approx_ctc = prefixes[i]->score;
|
|
if (ext_scorer != nullptr) {
|
|
std::vector<int> output;
|
|
prefixes[i]->get_path_vec(output);
|
|
auto prefix_length = output.size();
|
|
auto words = ext_scorer->split_labels(output);
|
|
// remove word insert
|
|
approx_ctc = approx_ctc - prefix_length * ext_scorer->beta;
|
|
// remove language model weight:
|
|
approx_ctc -= (ext_scorer->get_sent_log_prob(words)) * ext_scorer->alpha;
|
|
}
|
|
prefixes[i]->approx_ctc = approx_ctc;
|
|
}
|
|
|
|
return get_beam_search_result(prefixes, vocabulary, beam_size);
|
|
}
|
|
|
|
|
|
std::vector<std::vector<std::pair<double, std::string>>>
|
|
ctc_beam_search_decoder_batch(
|
|
const std::vector<std::vector<std::vector<double>>> &probs_split,
|
|
const size_t beam_size,
|
|
const std::vector<std::string> &vocabulary,
|
|
const size_t num_processes,
|
|
const double cutoff_prob,
|
|
const size_t cutoff_top_n,
|
|
Scorer *ext_scorer) {
|
|
VALID_CHECK_GT(num_processes, 0, "num_processes must be nonnegative!");
|
|
// thread pool
|
|
ThreadPool pool(num_processes);
|
|
// number of samples
|
|
size_t batch_size = probs_split.size();
|
|
|
|
// enqueue the tasks of decoding
|
|
std::vector<std::future<std::vector<std::pair<double, std::string>>>> res;
|
|
for (size_t i = 0; i < batch_size; ++i) {
|
|
res.emplace_back(pool.enqueue(ctc_beam_search_decoder,
|
|
probs_split[i],
|
|
beam_size,
|
|
vocabulary,
|
|
cutoff_prob,
|
|
cutoff_top_n,
|
|
ext_scorer));
|
|
}
|
|
|
|
// get decoding results
|
|
std::vector<std::vector<std::pair<double, std::string>>> batch_results;
|
|
for (size_t i = 0; i < batch_size; ++i) {
|
|
batch_results.emplace_back(res[i].get());
|
|
}
|
|
return batch_results;
|
|
}
|