|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
#
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
# You may obtain a copy of the License at
|
|
|
#
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
#
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
# See the License for the specific language governing permissions and
|
|
|
# limitations under the License.
|
|
|
import base64
|
|
|
import math
|
|
|
import os
|
|
|
import time
|
|
|
from typing import Optional
|
|
|
|
|
|
import numpy as np
|
|
|
import paddle
|
|
|
import yaml
|
|
|
from yacs.config import CfgNode
|
|
|
|
|
|
from paddlespeech.cli.log import logger
|
|
|
from paddlespeech.cli.tts.infer import TTSExecutor
|
|
|
from paddlespeech.cli.utils import download_and_decompress
|
|
|
from paddlespeech.cli.utils import MODEL_HOME
|
|
|
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
|
|
|
from paddlespeech.server.engine.base_engine import BaseEngine
|
|
|
from paddlespeech.server.utils.audio_process import float2pcm
|
|
|
from paddlespeech.server.utils.util import denorm
|
|
|
from paddlespeech.server.utils.util import get_chunks
|
|
|
from paddlespeech.t2s.frontend import English
|
|
|
from paddlespeech.t2s.frontend.zh_frontend import Frontend
|
|
|
from paddlespeech.t2s.modules.normalizer import ZScore
|
|
|
|
|
|
__all__ = ['TTSEngine']
|
|
|
|
|
|
# support online model
|
|
|
pretrained_models = {
|
|
|
# fastspeech2
|
|
|
"fastspeech2_csmsc-zh": {
|
|
|
'url':
|
|
|
'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_nosil_baker_ckpt_0.4.zip',
|
|
|
'md5':
|
|
|
'637d28a5e53aa60275612ba4393d5f22',
|
|
|
'config':
|
|
|
'default.yaml',
|
|
|
'ckpt':
|
|
|
'snapshot_iter_76000.pdz',
|
|
|
'speech_stats':
|
|
|
'speech_stats.npy',
|
|
|
'phones_dict':
|
|
|
'phone_id_map.txt',
|
|
|
},
|
|
|
"fastspeech2_cnndecoder_csmsc-zh": {
|
|
|
'url':
|
|
|
'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/fastspeech2/fastspeech2_cnndecoder_csmsc_ckpt_1.0.0.zip',
|
|
|
'md5':
|
|
|
'6eb28e22ace73e0ebe7845f86478f89f',
|
|
|
'config':
|
|
|
'cnndecoder.yaml',
|
|
|
'ckpt':
|
|
|
'snapshot_iter_153000.pdz',
|
|
|
'speech_stats':
|
|
|
'speech_stats.npy',
|
|
|
'phones_dict':
|
|
|
'phone_id_map.txt',
|
|
|
},
|
|
|
|
|
|
# mb_melgan
|
|
|
"mb_melgan_csmsc-zh": {
|
|
|
'url':
|
|
|
'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/mb_melgan/mb_melgan_csmsc_ckpt_0.1.1.zip',
|
|
|
'md5':
|
|
|
'ee5f0604e20091f0d495b6ec4618b90d',
|
|
|
'config':
|
|
|
'default.yaml',
|
|
|
'ckpt':
|
|
|
'snapshot_iter_1000000.pdz',
|
|
|
'speech_stats':
|
|
|
'feats_stats.npy',
|
|
|
},
|
|
|
|
|
|
# hifigan
|
|
|
"hifigan_csmsc-zh": {
|
|
|
'url':
|
|
|
'https://paddlespeech.bj.bcebos.com/Parakeet/released_models/hifigan/hifigan_csmsc_ckpt_0.1.1.zip',
|
|
|
'md5':
|
|
|
'dd40a3d88dfcf64513fba2f0f961ada6',
|
|
|
'config':
|
|
|
'default.yaml',
|
|
|
'ckpt':
|
|
|
'snapshot_iter_2500000.pdz',
|
|
|
'speech_stats':
|
|
|
'feats_stats.npy',
|
|
|
},
|
|
|
}
|
|
|
|
|
|
model_alias = {
|
|
|
# acoustic model
|
|
|
"fastspeech2":
|
|
|
"paddlespeech.t2s.models.fastspeech2:FastSpeech2",
|
|
|
"fastspeech2_inference":
|
|
|
"paddlespeech.t2s.models.fastspeech2:FastSpeech2Inference",
|
|
|
|
|
|
# voc
|
|
|
"mb_melgan":
|
|
|
"paddlespeech.t2s.models.melgan:MelGANGenerator",
|
|
|
"mb_melgan_inference":
|
|
|
"paddlespeech.t2s.models.melgan:MelGANInference",
|
|
|
"hifigan":
|
|
|
"paddlespeech.t2s.models.hifigan:HiFiGANGenerator",
|
|
|
"hifigan_inference":
|
|
|
"paddlespeech.t2s.models.hifigan:HiFiGANInference",
|
|
|
}
|
|
|
|
|
|
__all__ = ['TTSEngine']
|
|
|
|
|
|
|
|
|
class TTSServerExecutor(TTSExecutor):
|
|
|
def __init__(self, am_block, am_pad, voc_block, voc_pad):
|
|
|
super().__init__()
|
|
|
self.am_block = am_block
|
|
|
self.am_pad = am_pad
|
|
|
self.voc_block = voc_block
|
|
|
self.voc_pad = voc_pad
|
|
|
|
|
|
def get_model_info(self,
|
|
|
field: str,
|
|
|
model_name: str,
|
|
|
ckpt: Optional[os.PathLike],
|
|
|
stat: Optional[os.PathLike]):
|
|
|
"""get model information
|
|
|
|
|
|
Args:
|
|
|
field (str): am or voc
|
|
|
model_name (str): model type, support fastspeech2, higigan, mb_melgan
|
|
|
ckpt (Optional[os.PathLike]): ckpt file
|
|
|
stat (Optional[os.PathLike]): stat file, including mean and standard deviation
|
|
|
|
|
|
Returns:
|
|
|
[module]: model module
|
|
|
[Tensor]: mean
|
|
|
[Tensor]: standard deviation
|
|
|
"""
|
|
|
|
|
|
model_class = dynamic_import(model_name, model_alias)
|
|
|
|
|
|
if field == "am":
|
|
|
odim = self.am_config.n_mels
|
|
|
model = model_class(
|
|
|
idim=self.vocab_size, odim=odim, **self.am_config["model"])
|
|
|
model.set_state_dict(paddle.load(ckpt)["main_params"])
|
|
|
|
|
|
elif field == "voc":
|
|
|
model = model_class(**self.voc_config["generator_params"])
|
|
|
model.set_state_dict(paddle.load(ckpt)["generator_params"])
|
|
|
model.remove_weight_norm()
|
|
|
|
|
|
else:
|
|
|
logger.error("Please set correct field, am or voc")
|
|
|
|
|
|
model.eval()
|
|
|
model_mu, model_std = np.load(stat)
|
|
|
model_mu = paddle.to_tensor(model_mu)
|
|
|
model_std = paddle.to_tensor(model_std)
|
|
|
|
|
|
return model, model_mu, model_std
|
|
|
|
|
|
def _get_pretrained_path(self, tag: str) -> os.PathLike:
|
|
|
"""
|
|
|
Download and returns pretrained resources path of current task.
|
|
|
"""
|
|
|
support_models = list(pretrained_models.keys())
|
|
|
assert tag in pretrained_models, 'The model "{}" you want to use has not been supported, please choose other models.\nThe support models includes:\n\t\t{}\n'.format(
|
|
|
tag, '\n\t\t'.join(support_models))
|
|
|
|
|
|
res_path = os.path.join(MODEL_HOME, tag)
|
|
|
decompressed_path = download_and_decompress(pretrained_models[tag],
|
|
|
res_path)
|
|
|
decompressed_path = os.path.abspath(decompressed_path)
|
|
|
logger.info(
|
|
|
'Use pretrained model stored in: {}'.format(decompressed_path))
|
|
|
return decompressed_path
|
|
|
|
|
|
def _init_from_path(
|
|
|
self,
|
|
|
am: str='fastspeech2_csmsc',
|
|
|
am_config: Optional[os.PathLike]=None,
|
|
|
am_ckpt: Optional[os.PathLike]=None,
|
|
|
am_stat: Optional[os.PathLike]=None,
|
|
|
phones_dict: Optional[os.PathLike]=None,
|
|
|
tones_dict: Optional[os.PathLike]=None,
|
|
|
speaker_dict: Optional[os.PathLike]=None,
|
|
|
voc: str='mb_melgan_csmsc',
|
|
|
voc_config: Optional[os.PathLike]=None,
|
|
|
voc_ckpt: Optional[os.PathLike]=None,
|
|
|
voc_stat: Optional[os.PathLike]=None,
|
|
|
lang: str='zh', ):
|
|
|
"""
|
|
|
Init model and other resources from a specific path.
|
|
|
"""
|
|
|
if hasattr(self, 'am_inference') and hasattr(self, 'voc_inference'):
|
|
|
logger.info('Models had been initialized.')
|
|
|
return
|
|
|
# am model info
|
|
|
am_tag = am + '-' + lang
|
|
|
if am_ckpt is None or am_config is None or am_stat is None or phones_dict is None:
|
|
|
am_res_path = self._get_pretrained_path(am_tag)
|
|
|
self.am_res_path = am_res_path
|
|
|
self.am_config = os.path.join(am_res_path,
|
|
|
pretrained_models[am_tag]['config'])
|
|
|
self.am_ckpt = os.path.join(am_res_path,
|
|
|
pretrained_models[am_tag]['ckpt'])
|
|
|
self.am_stat = os.path.join(
|
|
|
am_res_path, pretrained_models[am_tag]['speech_stats'])
|
|
|
# must have phones_dict in acoustic
|
|
|
self.phones_dict = os.path.join(
|
|
|
am_res_path, pretrained_models[am_tag]['phones_dict'])
|
|
|
print("self.phones_dict:", self.phones_dict)
|
|
|
logger.info(am_res_path)
|
|
|
logger.info(self.am_config)
|
|
|
logger.info(self.am_ckpt)
|
|
|
else:
|
|
|
self.am_config = os.path.abspath(am_config)
|
|
|
self.am_ckpt = os.path.abspath(am_ckpt)
|
|
|
self.am_stat = os.path.abspath(am_stat)
|
|
|
self.phones_dict = os.path.abspath(phones_dict)
|
|
|
self.am_res_path = os.path.dirname(os.path.abspath(self.am_config))
|
|
|
print("self.phones_dict:", self.phones_dict)
|
|
|
|
|
|
self.tones_dict = None
|
|
|
self.speaker_dict = None
|
|
|
|
|
|
# voc model info
|
|
|
voc_tag = voc + '-' + lang
|
|
|
if voc_ckpt is None or voc_config is None or voc_stat is None:
|
|
|
voc_res_path = self._get_pretrained_path(voc_tag)
|
|
|
self.voc_res_path = voc_res_path
|
|
|
self.voc_config = os.path.join(voc_res_path,
|
|
|
pretrained_models[voc_tag]['config'])
|
|
|
self.voc_ckpt = os.path.join(voc_res_path,
|
|
|
pretrained_models[voc_tag]['ckpt'])
|
|
|
self.voc_stat = os.path.join(
|
|
|
voc_res_path, pretrained_models[voc_tag]['speech_stats'])
|
|
|
logger.info(voc_res_path)
|
|
|
logger.info(self.voc_config)
|
|
|
logger.info(self.voc_ckpt)
|
|
|
else:
|
|
|
self.voc_config = os.path.abspath(voc_config)
|
|
|
self.voc_ckpt = os.path.abspath(voc_ckpt)
|
|
|
self.voc_stat = os.path.abspath(voc_stat)
|
|
|
self.voc_res_path = os.path.dirname(
|
|
|
os.path.abspath(self.voc_config))
|
|
|
|
|
|
# Init body.
|
|
|
with open(self.am_config) as f:
|
|
|
self.am_config = CfgNode(yaml.safe_load(f))
|
|
|
with open(self.voc_config) as f:
|
|
|
self.voc_config = CfgNode(yaml.safe_load(f))
|
|
|
|
|
|
with open(self.phones_dict, "r") as f:
|
|
|
phn_id = [line.strip().split() for line in f.readlines()]
|
|
|
self.vocab_size = len(phn_id)
|
|
|
print("vocab_size:", self.vocab_size)
|
|
|
|
|
|
# frontend
|
|
|
if lang == 'zh':
|
|
|
self.frontend = Frontend(
|
|
|
phone_vocab_path=self.phones_dict,
|
|
|
tone_vocab_path=self.tones_dict)
|
|
|
|
|
|
elif lang == 'en':
|
|
|
self.frontend = English(phone_vocab_path=self.phones_dict)
|
|
|
print("frontend done!")
|
|
|
|
|
|
# am infer info
|
|
|
self.am_name = am[:am.rindex('_')]
|
|
|
if self.am_name == "fastspeech2_cnndecoder":
|
|
|
self.am_inference, self.am_mu, self.am_std = self.get_model_info(
|
|
|
"am", "fastspeech2", self.am_ckpt, self.am_stat)
|
|
|
else:
|
|
|
am, am_mu, am_std = self.get_model_info("am", self.am_name,
|
|
|
self.am_ckpt, self.am_stat)
|
|
|
am_normalizer = ZScore(am_mu, am_std)
|
|
|
am_inference_class = dynamic_import(self.am_name + '_inference',
|
|
|
model_alias)
|
|
|
self.am_inference = am_inference_class(am_normalizer, am)
|
|
|
self.am_inference.eval()
|
|
|
print("acoustic model done!")
|
|
|
|
|
|
# voc infer info
|
|
|
self.voc_name = voc[:voc.rindex('_')]
|
|
|
voc, voc_mu, voc_std = self.get_model_info("voc", self.voc_name,
|
|
|
self.voc_ckpt, self.voc_stat)
|
|
|
voc_normalizer = ZScore(voc_mu, voc_std)
|
|
|
voc_inference_class = dynamic_import(self.voc_name + '_inference',
|
|
|
model_alias)
|
|
|
self.voc_inference = voc_inference_class(voc_normalizer, voc)
|
|
|
self.voc_inference.eval()
|
|
|
print("voc done!")
|
|
|
|
|
|
def depadding(self, data, chunk_num, chunk_id, block, pad, upsample):
|
|
|
"""
|
|
|
Streaming inference removes the result of pad inference
|
|
|
"""
|
|
|
front_pad = min(chunk_id * block, pad)
|
|
|
# first chunk
|
|
|
if chunk_id == 0:
|
|
|
data = data[:block * upsample]
|
|
|
# last chunk
|
|
|
elif chunk_id == chunk_num - 1:
|
|
|
data = data[front_pad * upsample:]
|
|
|
# middle chunk
|
|
|
else:
|
|
|
data = data[front_pad * upsample:(front_pad + block) * upsample]
|
|
|
|
|
|
return data
|
|
|
|
|
|
@paddle.no_grad()
|
|
|
def infer(
|
|
|
self,
|
|
|
text: str,
|
|
|
lang: str='zh',
|
|
|
am: str='fastspeech2_csmsc',
|
|
|
spk_id: int=0, ):
|
|
|
"""
|
|
|
Model inference and result stored in self.output.
|
|
|
"""
|
|
|
|
|
|
am_block = self.am_block
|
|
|
am_pad = self.am_pad
|
|
|
am_upsample = 1
|
|
|
voc_block = self.voc_block
|
|
|
voc_pad = self.voc_pad
|
|
|
voc_upsample = self.voc_config.n_shift
|
|
|
# first_flag 用于标记首包
|
|
|
first_flag = 1
|
|
|
|
|
|
get_tone_ids = False
|
|
|
merge_sentences = False
|
|
|
frontend_st = time.time()
|
|
|
if lang == 'zh':
|
|
|
input_ids = self.frontend.get_input_ids(
|
|
|
text,
|
|
|
merge_sentences=merge_sentences,
|
|
|
get_tone_ids=get_tone_ids)
|
|
|
phone_ids = input_ids["phone_ids"]
|
|
|
if get_tone_ids:
|
|
|
tone_ids = input_ids["tone_ids"]
|
|
|
elif lang == 'en':
|
|
|
input_ids = self.frontend.get_input_ids(
|
|
|
text, merge_sentences=merge_sentences)
|
|
|
phone_ids = input_ids["phone_ids"]
|
|
|
else:
|
|
|
print("lang should in {'zh', 'en'}!")
|
|
|
frontend_et = time.time()
|
|
|
self.frontend_time = frontend_et - frontend_st
|
|
|
|
|
|
for i in range(len(phone_ids)):
|
|
|
part_phone_ids = phone_ids[i]
|
|
|
voc_chunk_id = 0
|
|
|
|
|
|
# fastspeech2_csmsc
|
|
|
if am == "fastspeech2_csmsc":
|
|
|
# am
|
|
|
mel = self.am_inference(part_phone_ids)
|
|
|
if first_flag == 1:
|
|
|
first_am_et = time.time()
|
|
|
self.first_am_infer = first_am_et - frontend_et
|
|
|
|
|
|
# voc streaming
|
|
|
mel_chunks = get_chunks(mel, voc_block, voc_pad, "voc")
|
|
|
voc_chunk_num = len(mel_chunks)
|
|
|
voc_st = time.time()
|
|
|
for i, mel_chunk in enumerate(mel_chunks):
|
|
|
sub_wav = self.voc_inference(mel_chunk)
|
|
|
sub_wav = self.depadding(sub_wav, voc_chunk_num, i,
|
|
|
voc_block, voc_pad, voc_upsample)
|
|
|
if first_flag == 1:
|
|
|
first_voc_et = time.time()
|
|
|
self.first_voc_infer = first_voc_et - first_am_et
|
|
|
self.first_response_time = first_voc_et - frontend_st
|
|
|
first_flag = 0
|
|
|
|
|
|
yield sub_wav
|
|
|
|
|
|
# fastspeech2_cnndecoder_csmsc
|
|
|
elif am == "fastspeech2_cnndecoder_csmsc":
|
|
|
# am
|
|
|
orig_hs = self.am_inference.encoder_infer(part_phone_ids)
|
|
|
|
|
|
# streaming voc chunk info
|
|
|
mel_len = orig_hs.shape[1]
|
|
|
voc_chunk_num = math.ceil(mel_len / self.voc_block)
|
|
|
start = 0
|
|
|
end = min(self.voc_block + self.voc_pad, mel_len)
|
|
|
|
|
|
# streaming am
|
|
|
hss = get_chunks(orig_hs, self.am_block, self.am_pad, "am")
|
|
|
am_chunk_num = len(hss)
|
|
|
for i, hs in enumerate(hss):
|
|
|
before_outs = self.am_inference.decoder(hs)
|
|
|
after_outs = before_outs + self.am_inference.postnet(
|
|
|
before_outs.transpose((0, 2, 1))).transpose((0, 2, 1))
|
|
|
normalized_mel = after_outs[0]
|
|
|
sub_mel = denorm(normalized_mel, self.am_mu, self.am_std)
|
|
|
sub_mel = self.depadding(sub_mel, am_chunk_num, i, am_block,
|
|
|
am_pad, am_upsample)
|
|
|
|
|
|
if i == 0:
|
|
|
mel_streaming = sub_mel
|
|
|
else:
|
|
|
mel_streaming = np.concatenate(
|
|
|
(mel_streaming, sub_mel), axis=0)
|
|
|
|
|
|
# streaming voc
|
|
|
# 当流式AM推理的mel帧数大于流式voc推理的chunk size,开始进行流式voc 推理
|
|
|
while (mel_streaming.shape[0] >= end and
|
|
|
voc_chunk_id < voc_chunk_num):
|
|
|
if first_flag == 1:
|
|
|
first_am_et = time.time()
|
|
|
self.first_am_infer = first_am_et - frontend_et
|
|
|
voc_chunk = mel_streaming[start:end, :]
|
|
|
voc_chunk = paddle.to_tensor(voc_chunk)
|
|
|
sub_wav = self.voc_inference(voc_chunk)
|
|
|
|
|
|
sub_wav = self.depadding(sub_wav, voc_chunk_num,
|
|
|
voc_chunk_id, voc_block,
|
|
|
voc_pad, voc_upsample)
|
|
|
if first_flag == 1:
|
|
|
first_voc_et = time.time()
|
|
|
self.first_voc_infer = first_voc_et - first_am_et
|
|
|
self.first_response_time = first_voc_et - frontend_st
|
|
|
first_flag = 0
|
|
|
|
|
|
yield sub_wav
|
|
|
|
|
|
voc_chunk_id += 1
|
|
|
start = max(0, voc_chunk_id * voc_block - voc_pad)
|
|
|
end = min((voc_chunk_id + 1) * voc_block + voc_pad,
|
|
|
mel_len)
|
|
|
|
|
|
else:
|
|
|
logger.error(
|
|
|
"Only support fastspeech2_csmsc or fastspeech2_cnndecoder_csmsc on streaming tts."
|
|
|
)
|
|
|
|
|
|
self.final_response_time = time.time() - frontend_st
|
|
|
|
|
|
|
|
|
class TTSEngine(BaseEngine):
|
|
|
"""TTS server engine
|
|
|
|
|
|
Args:
|
|
|
metaclass: Defaults to Singleton.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, name=None):
|
|
|
"""Initialize TTS server engine
|
|
|
"""
|
|
|
super().__init__()
|
|
|
|
|
|
def init(self, config: dict) -> bool:
|
|
|
self.config = config
|
|
|
assert (
|
|
|
config.am == "fastspeech2_csmsc" or
|
|
|
config.am == "fastspeech2_cnndecoder_csmsc"
|
|
|
) and (
|
|
|
config.voc == "hifigan_csmsc" or config.voc == "mb_melgan_csmsc"
|
|
|
), 'Please check config, am support: fastspeech2, voc support: hifigan_csmsc-zh or mb_melgan_csmsc.'
|
|
|
|
|
|
assert (
|
|
|
config.voc_block > 0 and config.voc_pad > 0
|
|
|
), "Please set correct voc_block and voc_pad, they should be more than 0."
|
|
|
|
|
|
try:
|
|
|
if self.config.device:
|
|
|
self.device = self.config.device
|
|
|
else:
|
|
|
self.device = paddle.get_device()
|
|
|
paddle.set_device(self.device)
|
|
|
except Exception as e:
|
|
|
logger.error(
|
|
|
"Set device failed, please check if device is already used and the parameter 'device' in the yaml file"
|
|
|
)
|
|
|
logger.error("Initialize TTS server engine Failed on device: %s." %
|
|
|
(self.device))
|
|
|
return False
|
|
|
|
|
|
self.executor = TTSServerExecutor(config.am_block, config.am_pad,
|
|
|
config.voc_block, config.voc_pad)
|
|
|
|
|
|
try:
|
|
|
self.executor._init_from_path(
|
|
|
am=self.config.am,
|
|
|
am_config=self.config.am_config,
|
|
|
am_ckpt=self.config.am_ckpt,
|
|
|
am_stat=self.config.am_stat,
|
|
|
phones_dict=self.config.phones_dict,
|
|
|
tones_dict=self.config.tones_dict,
|
|
|
speaker_dict=self.config.speaker_dict,
|
|
|
voc=self.config.voc,
|
|
|
voc_config=self.config.voc_config,
|
|
|
voc_ckpt=self.config.voc_ckpt,
|
|
|
voc_stat=self.config.voc_stat,
|
|
|
lang=self.config.lang)
|
|
|
except Exception as e:
|
|
|
logger.error("Failed to get model related files.")
|
|
|
logger.error("Initialize TTS server engine Failed on device: %s." %
|
|
|
(self.device))
|
|
|
return False
|
|
|
|
|
|
logger.info("Initialize TTS server engine successfully on device: %s." %
|
|
|
(self.device))
|
|
|
|
|
|
# warm up
|
|
|
try:
|
|
|
self.warm_up()
|
|
|
except Exception as e:
|
|
|
logger.error("Failed to warm up on tts engine.")
|
|
|
return False
|
|
|
|
|
|
return True
|
|
|
|
|
|
def warm_up(self):
|
|
|
"""warm up
|
|
|
"""
|
|
|
if self.config.lang == 'zh':
|
|
|
sentence = "您好,欢迎使用语音合成服务。"
|
|
|
if self.config.lang == 'en':
|
|
|
sentence = "Hello and welcome to the speech synthesis service."
|
|
|
logger.info(
|
|
|
"*******************************warm up ********************************"
|
|
|
)
|
|
|
for i in range(3):
|
|
|
for wav in self.executor.infer(
|
|
|
text=sentence,
|
|
|
lang=self.config.lang,
|
|
|
am=self.config.am,
|
|
|
spk_id=0, ):
|
|
|
logger.info(
|
|
|
f"The first response time of the {i} warm up: {self.executor.first_response_time} s"
|
|
|
)
|
|
|
break
|
|
|
logger.info(
|
|
|
"**********************************************************************"
|
|
|
)
|
|
|
|
|
|
def preprocess(self, text_bese64: str=None, text_bytes: bytes=None):
|
|
|
# Convert byte to text
|
|
|
if text_bese64:
|
|
|
text_bytes = base64.b64decode(text_bese64) # base64 to bytes
|
|
|
text = text_bytes.decode('utf-8') # bytes to text
|
|
|
|
|
|
return text
|
|
|
|
|
|
def run(self,
|
|
|
sentence: str,
|
|
|
spk_id: int=0,
|
|
|
speed: float=1.0,
|
|
|
volume: float=1.0,
|
|
|
sample_rate: int=0,
|
|
|
save_path: str=None):
|
|
|
""" run include inference and postprocess.
|
|
|
|
|
|
Args:
|
|
|
sentence (str): text to be synthesized
|
|
|
spk_id (int, optional): speaker id for multi-speaker speech synthesis. Defaults to 0.
|
|
|
speed (float, optional): speed. Defaults to 1.0.
|
|
|
volume (float, optional): volume. Defaults to 1.0.
|
|
|
sample_rate (int, optional): target sample rate for synthesized audio,
|
|
|
0 means the same as the model sampling rate. Defaults to 0.
|
|
|
save_path (str, optional): The save path of the synthesized audio.
|
|
|
None means do not save audio. Defaults to None.
|
|
|
|
|
|
Returns:
|
|
|
wav_base64: The base64 format of the synthesized audio.
|
|
|
"""
|
|
|
|
|
|
wav_list = []
|
|
|
|
|
|
for wav in self.executor.infer(
|
|
|
text=sentence,
|
|
|
lang=self.config.lang,
|
|
|
am=self.config.am,
|
|
|
spk_id=spk_id, ):
|
|
|
|
|
|
# wav type: <class 'numpy.ndarray'> float32, convert to pcm (base64)
|
|
|
wav = float2pcm(wav) # float32 to int16
|
|
|
wav_bytes = wav.tobytes() # to bytes
|
|
|
wav_base64 = base64.b64encode(wav_bytes).decode('utf8') # to base64
|
|
|
wav_list.append(wav)
|
|
|
|
|
|
yield wav_base64
|
|
|
|
|
|
wav_all = np.concatenate(wav_list, axis=0)
|
|
|
duration = len(wav_all) / self.executor.am_config.fs
|
|
|
logger.info(f"sentence: {sentence}")
|
|
|
logger.info(f"The durations of audio is: {duration} s")
|
|
|
logger.info(
|
|
|
f"first response time: {self.executor.first_response_time} s")
|
|
|
logger.info(
|
|
|
f"final response time: {self.executor.final_response_time} s")
|
|
|
logger.info(f"RTF: {self.executor.final_response_time / duration}")
|
|
|
logger.info(
|
|
|
f"Other info: front time: {self.executor.frontend_time} s, first am infer time: {self.executor.first_am_infer} s, first voc infer time: {self.executor.first_voc_infer} s,"
|
|
|
)
|