You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/modules/predictor/length_regulator.py

124 lines
4.4 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
"""Length regulator related modules."""
import numpy as np
import paddle
from paddle import nn
class LengthRegulator(nn.Layer):
"""Length regulator module for feed-forward Transformer.
This is a module of length regulator described in
`FastSpeech: Fast, Robust and Controllable Text to Speech`_.
The length regulator expands char or
phoneme-level embedding features to frame-level by repeating each
feature based on the corresponding predicted durations.
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
https://arxiv.org/pdf/1905.09263.pdf
"""
def __init__(self, pad_value=0.0):
"""Initilize length regulator module.
Args:
pad_value (float, optional): Value used for padding.
"""
super().__init__()
self.pad_value = pad_value
# expand_numpy is faster than expand
def expand_numpy(self, encodings: paddle.Tensor,
durations: paddle.Tensor) -> paddle.Tensor:
"""
encodings: (B, T, C)
durations: (B, T)
"""
batch_size, t_enc = durations.shape
durations = durations.numpy()
slens = np.sum(durations, -1)
t_dec = np.max(slens)
M = np.zeros([batch_size, t_dec, t_enc])
for i in range(batch_size):
k = 0
for j in range(t_enc):
d = durations[i, j]
M[i, k:k + d, j] = 1
k += d
M = paddle.to_tensor(M, dtype=encodings.dtype)
encodings = paddle.matmul(M, encodings)
return encodings
def expand(self, encodings: paddle.Tensor,
durations: paddle.Tensor) -> paddle.Tensor:
"""
encodings: (B, T, C)
durations: (B, T)
"""
batch_size, t_enc = paddle.shape(durations)
slens = paddle.sum(durations, -1)
t_dec = paddle.max(slens)
t_dec_1 = t_dec + 1
flatten_duration = paddle.cumsum(
paddle.reshape(durations, [batch_size * t_enc])) + 1
init = paddle.zeros(t_dec_1)
m_batch = batch_size * t_enc
M = paddle.zeros([t_dec_1, m_batch])
for i in range(m_batch):
d = flatten_duration[i]
m = paddle.concat(
[paddle.ones(d), paddle.zeros(t_dec_1 - d)], axis=0)
M[:, i] = m - init
init = m
M = paddle.reshape(M, shape=[t_dec_1, batch_size, t_enc])
M = M[1:, :, :]
M = paddle.transpose(M, (1, 0, 2))
encodings = paddle.matmul(M, encodings)
return encodings
def forward(self, xs, ds, alpha=1.0, is_inference=False):
"""Calculate forward propagation.
Args:
xs (Tensor): Batch of sequences of char or phoneme embeddings (B, Tmax, D).
ds (Tensor(int64)): Batch of durations of each frame (B, T).
alpha (float, optional): Alpha value to control speed of speech.
Returns:
Tensor: replicated input tensor based on durations (B, T*, D).
"""
if alpha != 1.0:
assert alpha > 0
ds = paddle.round(ds.cast(dtype=paddle.float32) * alpha)
ds = ds.cast(dtype=paddle.int64)
'''
from distutils.version import LooseVersion
from paddlespeech.t2s.modules.nets_utils import pad_list
# 这里在 paddle 2.2.2 的动转静是不通的
# if LooseVersion(paddle.__version__) >= "2.3.0" or hasattr(paddle, 'repeat_interleave'):
# if LooseVersion(paddle.__version__) >= "2.3.0":
if hasattr(paddle, 'repeat_interleave'):
repeat = [paddle.repeat_interleave(x, d, axis=0) for x, d in zip(xs, ds)]
return pad_list(repeat, self.pad_value)
'''
if is_inference:
return self.expand(xs, ds)
else:
return self.expand_numpy(xs, ds)