You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
244 lines
9.9 KiB
244 lines
9.9 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import logging
|
|
from typeguard import check_argument_types
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
from paddle.nn import functional as F
|
|
from paddle.nn import initializer as I
|
|
|
|
from deepspeech.decoders.swig_wrapper import Scorer
|
|
from deepspeech.decoders.swig_wrapper import ctc_greedy_decoder
|
|
from deepspeech.decoders.swig_wrapper import ctc_beam_search_decoder_batch
|
|
from deepspeech.modules.loss import CTCLoss
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
__all__ = ['CTCDecoder']
|
|
|
|
|
|
class CTCDecoder(nn.Layer):
|
|
def __init__(self,
|
|
enc_n_units,
|
|
odim,
|
|
blank_id=0,
|
|
dropout_rate: float=0.0,
|
|
reduction: bool=True,
|
|
batch_average: bool=False):
|
|
"""CTC decoder
|
|
|
|
Args:
|
|
enc_n_units ([int]): encoder output dimention
|
|
vocab_size ([int]): text vocabulary size
|
|
dropout_rate (float): dropout rate (0.0 ~ 1.0)
|
|
reduction (bool): reduce the CTC loss into a scalar, True for 'sum' or 'none'
|
|
batch_average (bool): do batch dim wise average.
|
|
"""
|
|
assert check_argument_types()
|
|
super().__init__()
|
|
|
|
self.blank_id = blank_id
|
|
self.odim = odim
|
|
self.dropout_rate = dropout_rate
|
|
self.ctc_lo = nn.Linear(enc_n_units, self.odim)
|
|
reduction_type = "sum" if reduction else "none"
|
|
self.criterion = CTCLoss(
|
|
blank=self.blank_id,
|
|
reduction=reduction_type,
|
|
batch_average=batch_average)
|
|
|
|
# CTCDecoder LM Score handle
|
|
self._ext_scorer = None
|
|
|
|
def forward(self, hs_pad, hlens, ys_pad, ys_lens):
|
|
"""Calculate CTC loss.
|
|
|
|
Args:
|
|
hs_pad (Tensor): batch of padded hidden state sequences (B, Tmax, D)
|
|
hlens (Tensor): batch of lengths of hidden state sequences (B)
|
|
ys_pad (Tenosr): batch of padded character id sequence tensor (B, Lmax)
|
|
ys_lens (Tensor): batch of lengths of character sequence (B)
|
|
Returns:
|
|
loss (Tenosr): scalar.
|
|
"""
|
|
logits = self.ctc_lo(F.dropout(hs_pad, p=self.dropout_rate))
|
|
loss = self.criterion(logits, ys_pad, hlens, ys_lens)
|
|
return loss
|
|
|
|
def probs(self, eouts: paddle.Tensor, temperature: float=1.0):
|
|
"""Get CTC probabilities.
|
|
Args:
|
|
eouts (FloatTensor): `[B, T, enc_units]`
|
|
Returns:
|
|
probs (FloatTensor): `[B, T, odim]`
|
|
"""
|
|
return F.softmax(self.ctc_lo(eouts) / temperature, axis=-1)
|
|
|
|
def scores(self, eouts: paddle.Tensor, temperature: float=1.0):
|
|
"""Get log-scale CTC probabilities.
|
|
Args:
|
|
eouts (FloatTensor): `[B, T, enc_units]`
|
|
Returns:
|
|
log_probs (FloatTensor): `[B, T, odim]`
|
|
"""
|
|
return F.log_softmax(self.ctc_lo(eouts) / temperature, axis=-1)
|
|
|
|
def log_softmax(self, hs_pad: paddle.Tensor) -> paddle.Tensor:
|
|
"""log_softmax of frame activations
|
|
Args:
|
|
Tensor hs_pad: 3d tensor (B, Tmax, eprojs)
|
|
Returns:
|
|
paddle.Tensor: log softmax applied 3d tensor (B, Tmax, odim)
|
|
"""
|
|
return self.scores(hs_pad)
|
|
|
|
def argmax(self, hs_pad: paddle.Tensor) -> paddle.Tensor:
|
|
"""argmax of frame activations
|
|
Args:
|
|
paddle.Tensor hs_pad: 3d tensor (B, Tmax, eprojs)
|
|
Returns:
|
|
paddle.Tensor: argmax applied 2d tensor (B, Tmax)
|
|
"""
|
|
return paddle.argmax(self.ctc_lo(hs_pad), dim=2)
|
|
|
|
def _decode_batch_greedy(self, probs_split, vocab_list):
|
|
"""Decode by best path for a batch of probs matrix input.
|
|
:param probs_split: List of 2-D probability matrix, and each consists
|
|
of prob vectors for one speech utterancce.
|
|
:param probs_split: List of matrix
|
|
:param vocab_list: List of tokens in the vocabulary, for decoding.
|
|
:type vocab_list: list
|
|
:return: List of transcription texts.
|
|
:rtype: List of str
|
|
"""
|
|
results = []
|
|
for i, probs in enumerate(probs_split):
|
|
output_transcription = ctc_greedy_decoder(
|
|
probs_seq=probs, vocabulary=vocab_list)
|
|
results.append(output_transcription)
|
|
return results
|
|
|
|
def _init_ext_scorer(self, beam_alpha, beam_beta, language_model_path,
|
|
vocab_list):
|
|
"""Initialize the external scorer.
|
|
:param beam_alpha: Parameter associated with language model.
|
|
:type beam_alpha: float
|
|
:param beam_beta: Parameter associated with word count.
|
|
:type beam_beta: float
|
|
:param language_model_path: Filepath for language model. If it is
|
|
empty, the external scorer will be set to
|
|
None, and the decoding method will be pure
|
|
beam search without scorer.
|
|
:type language_model_path: str|None
|
|
:param vocab_list: List of tokens in the vocabulary, for decoding.
|
|
:type vocab_list: list
|
|
"""
|
|
# init once
|
|
if self._ext_scorer != None:
|
|
return
|
|
|
|
if language_model_path != '':
|
|
logger.info("begin to initialize the external scorer "
|
|
"for decoding")
|
|
self._ext_scorer = Scorer(beam_alpha, beam_beta,
|
|
language_model_path, vocab_list)
|
|
lm_char_based = self._ext_scorer.is_character_based()
|
|
lm_max_order = self._ext_scorer.get_max_order()
|
|
lm_dict_size = self._ext_scorer.get_dict_size()
|
|
logger.info("language model: "
|
|
"is_character_based = %d," % lm_char_based +
|
|
" max_order = %d," % lm_max_order + " dict_size = %d" %
|
|
lm_dict_size)
|
|
logger.info("end initializing scorer")
|
|
else:
|
|
self._ext_scorer = None
|
|
logger.info("no language model provided, "
|
|
"decoding by pure beam search without scorer.")
|
|
|
|
def _decode_batch_beam_search(self, probs_split, beam_alpha, beam_beta,
|
|
beam_size, cutoff_prob, cutoff_top_n,
|
|
vocab_list, num_processes):
|
|
"""Decode by beam search for a batch of probs matrix input.
|
|
:param probs_split: List of 2-D probability matrix, and each consists
|
|
of prob vectors for one speech utterancce.
|
|
:param probs_split: List of matrix
|
|
:param beam_alpha: Parameter associated with language model.
|
|
:type beam_alpha: float
|
|
:param beam_beta: Parameter associated with word count.
|
|
:type beam_beta: float
|
|
:param beam_size: Width for Beam search.
|
|
:type beam_size: int
|
|
:param cutoff_prob: Cutoff probability in pruning,
|
|
default 1.0, no pruning.
|
|
:type cutoff_prob: float
|
|
:param cutoff_top_n: Cutoff number in pruning, only top cutoff_top_n
|
|
characters with highest probs in vocabulary will be
|
|
used in beam search, default 40.
|
|
:type cutoff_top_n: int
|
|
:param vocab_list: List of tokens in the vocabulary, for decoding.
|
|
:type vocab_list: list
|
|
:param num_processes: Number of processes (CPU) for decoder.
|
|
:type num_processes: int
|
|
:return: List of transcription texts.
|
|
:rtype: List of str
|
|
"""
|
|
if self._ext_scorer != None:
|
|
self._ext_scorer.reset_params(beam_alpha, beam_beta)
|
|
|
|
# beam search decode
|
|
num_processes = min(num_processes, len(probs_split))
|
|
beam_search_results = ctc_beam_search_decoder_batch(
|
|
probs_split=probs_split,
|
|
vocabulary=vocab_list,
|
|
beam_size=beam_size,
|
|
num_processes=num_processes,
|
|
ext_scoring_func=self._ext_scorer,
|
|
cutoff_prob=cutoff_prob,
|
|
cutoff_top_n=cutoff_top_n)
|
|
|
|
results = [result[0][1] for result in beam_search_results]
|
|
return results
|
|
|
|
def init_decode(self, beam_alpha, beam_beta, lang_model_path, vocab_list,
|
|
decoding_method):
|
|
if decoding_method == "ctc_beam_search":
|
|
self._init_ext_scorer(beam_alpha, beam_beta, lang_model_path,
|
|
vocab_list)
|
|
|
|
def decode_probs(self, probs, logits_lens, vocab_list, decoding_method,
|
|
lang_model_path, beam_alpha, beam_beta, beam_size,
|
|
cutoff_prob, cutoff_top_n, num_processes):
|
|
""" probs: activation after softmax
|
|
logits_len: audio output lens
|
|
"""
|
|
probs_split = [probs[i, :l, :] for i, l in enumerate(logits_lens)]
|
|
if decoding_method == "ctc_greedy":
|
|
result_transcripts = self._decode_batch_greedy(
|
|
probs_split=probs_split, vocab_list=vocab_list)
|
|
elif decoding_method == "ctc_beam_search":
|
|
result_transcripts = self._decode_batch_beam_search(
|
|
probs_split=probs_split,
|
|
beam_alpha=beam_alpha,
|
|
beam_beta=beam_beta,
|
|
beam_size=beam_size,
|
|
cutoff_prob=cutoff_prob,
|
|
cutoff_top_n=cutoff_top_n,
|
|
vocab_list=vocab_list,
|
|
num_processes=num_processes)
|
|
else:
|
|
raise ValueError(f"Not support: {decoding_method}")
|
|
return result_transcripts
|