You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/vector/exps/ge2e/inference.py

141 lines
4.7 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from pathlib import Path
import numpy as np
import paddle
import tqdm
from paddlespeech.vector.exps.ge2e.audio_processor import SpeakerVerificationPreprocessor
from paddlespeech.vector.exps.ge2e.config import get_cfg_defaults
from paddlespeech.vector.models.lstm_speaker_encoder import LSTMSpeakerEncoder
def embed_utterance(processor, model, fpath_or_wav):
# audio processor
wav = processor.preprocess_wav(fpath_or_wav)
mel_partials = processor.extract_mel_partials(wav)
model.eval()
# speaker encoder
with paddle.no_grad():
mel_partials = paddle.to_tensor(mel_partials)
with paddle.no_grad():
embed = model.embed_utterance(mel_partials)
embed = embed.numpy()
return embed
def _process_utterance(ifpath: Path,
input_dir: Path,
output_dir: Path,
processor: SpeakerVerificationPreprocessor,
model: LSTMSpeakerEncoder):
rel_path = ifpath.relative_to(input_dir)
ofpath = (output_dir / rel_path).with_suffix(".npy")
ofpath.parent.mkdir(parents=True, exist_ok=True)
embed = embed_utterance(processor, model, ifpath)
np.save(ofpath, embed)
def main(config, args):
if args.ngpu == 0:
paddle.set_device("cpu")
elif args.ngpu > 0:
paddle.set_device("gpu")
else:
print("ngpu should >= 0 !")
# load model
model = LSTMSpeakerEncoder(config.data.n_mels, config.model.num_layers,
config.model.hidden_size,
config.model.embedding_size)
weights_fpath = str(Path(args.checkpoint_path).expanduser())
model_state_dict = paddle.load(weights_fpath + ".pdparams")
model.set_state_dict(model_state_dict)
model.eval()
print(f"Loaded encoder {weights_fpath}")
# create audio processor
c = config.data
processor = SpeakerVerificationPreprocessor(
sampling_rate=c.sampling_rate,
audio_norm_target_dBFS=c.audio_norm_target_dBFS,
vad_window_length=c.vad_window_length,
vad_moving_average_width=c.vad_moving_average_width,
vad_max_silence_length=c.vad_max_silence_length,
mel_window_length=c.mel_window_length,
mel_window_step=c.mel_window_step,
n_mels=c.n_mels,
partial_n_frames=c.partial_n_frames,
min_pad_coverage=c.min_pad_coverage,
partial_overlap_ratio=c.min_pad_coverage, )
# input output preparation
input_dir = Path(args.input).expanduser()
ifpaths = list(input_dir.rglob(args.pattern))
print(f"{len(ifpaths)} utterances in total")
output_dir = Path(args.output).expanduser()
output_dir.mkdir(parents=True, exist_ok=True)
for ifpath in tqdm.tqdm(ifpaths, unit="utterance"):
_process_utterance(ifpath, input_dir, output_dir, processor, model)
if __name__ == "__main__":
config = get_cfg_defaults()
parser = argparse.ArgumentParser(description="compute utterance embed.")
parser.add_argument(
"--config",
metavar="FILE",
help="path of the config file to overwrite to default config with.")
parser.add_argument(
"--input", type=str, help="path of the audio_file folder.")
parser.add_argument(
"--pattern",
type=str,
default="*.wav",
help="pattern to filter audio files.")
parser.add_argument(
"--output",
metavar="OUTPUT_DIR",
help="path to save checkpoint and logs.")
# load from saved checkpoint
parser.add_argument(
"--checkpoint_path", type=str, help="path of the checkpoint to load")
# overwrite extra config and default config
parser.add_argument(
"--opts",
nargs=argparse.REMAINDER,
help="options to overwrite --config file and the default config, passing in KEY VALUE pairs"
)
parser.add_argument(
"--ngpu", type=int, default=1, help="if ngpu=0, use cpu.")
args = parser.parse_args()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
print(args)
main(config, args)