You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
117 lines
3.5 KiB
117 lines
3.5 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import json
|
|
|
|
from dataclasses import dataclass
|
|
from dataclasses import fields
|
|
from paddle.io import Dataset
|
|
|
|
from paddleaudio import load as load_audio
|
|
from paddleaudio.compliance.librosa import melspectrogram
|
|
from paddleaudio.compliance.librosa import mfcc
|
|
|
|
|
|
@dataclass
|
|
class meta_info:
|
|
"""the audio meta info in the vector JSONDataset
|
|
Args:
|
|
id (str): the segment name
|
|
duration (float): segment time
|
|
wav (str): wav file path
|
|
start (int): start point in the original wav file
|
|
stop (int): stop point in the original wav file
|
|
lab_id (str): the record id
|
|
"""
|
|
id: str
|
|
duration: float
|
|
wav: str
|
|
start: int
|
|
stop: int
|
|
record_id: str
|
|
|
|
|
|
# json dataset support feature type
|
|
feat_funcs = {
|
|
'raw': None,
|
|
'melspectrogram': melspectrogram,
|
|
'mfcc': mfcc,
|
|
}
|
|
|
|
|
|
class JSONDataset(Dataset):
|
|
"""
|
|
dataset from json file.
|
|
"""
|
|
|
|
def __init__(self, json_file: str, feat_type: str='raw', **kwargs):
|
|
"""
|
|
Ags:
|
|
json_file (:obj:`str`): Data prep JSON file.
|
|
labels (:obj:`List[int]`): Labels of audio files.
|
|
feat_type (:obj:`str`, `optional`, defaults to `raw`):
|
|
It identifies the feature type that user wants to extrace of an audio file.
|
|
"""
|
|
if feat_type not in feat_funcs.keys():
|
|
raise RuntimeError(
|
|
f"Unknown feat_type: {feat_type}, it must be one in {list(feat_funcs.keys())}"
|
|
)
|
|
|
|
self.json_file = json_file
|
|
self.feat_type = feat_type
|
|
self.feat_config = kwargs
|
|
self._data = self._get_data()
|
|
super(JSONDataset, self).__init__()
|
|
|
|
def _get_data(self):
|
|
with open(self.json_file, "r") as f:
|
|
meta_data = json.load(f)
|
|
data = []
|
|
for key in meta_data:
|
|
sub_seg = meta_data[key]["wav"]
|
|
wav = sub_seg["file"]
|
|
duration = sub_seg["duration"]
|
|
start = sub_seg["start"]
|
|
stop = sub_seg["stop"]
|
|
rec_id = str(key).rsplit("_", 2)[0]
|
|
data.append(
|
|
meta_info(
|
|
str(key),
|
|
float(duration), wav, int(start), int(stop), str(rec_id)))
|
|
return data
|
|
|
|
def _convert_to_record(self, idx: int):
|
|
sample = self._data[idx]
|
|
|
|
record = {}
|
|
# To show all fields in a namedtuple
|
|
for field in fields(sample):
|
|
record[field.name] = getattr(sample, field.name)
|
|
|
|
waveform, sr = load_audio(record['wav'])
|
|
waveform = waveform[record['start']:record['stop']]
|
|
|
|
feat_func = feat_funcs[self.feat_type]
|
|
feat = feat_func(
|
|
waveform, sr=sr, **self.feat_config) if feat_func else waveform
|
|
|
|
record.update({'feat': feat})
|
|
|
|
return record
|
|
|
|
def __getitem__(self, idx):
|
|
return self._convert_to_record(idx)
|
|
|
|
def __len__(self):
|
|
return len(self._data)
|