You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
193 lines
6.6 KiB
193 lines
6.6 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from dataclasses import dataclass
|
|
from dataclasses import fields
|
|
from paddle.io import Dataset
|
|
|
|
from paddleaudio import load as load_audio
|
|
from paddleaudio.compliance.librosa import melspectrogram
|
|
from paddlespeech.s2t.utils.log import Log
|
|
logger = Log(__name__).getlog()
|
|
|
|
# the audio meta info in the vector CSVDataset
|
|
# utt_id: the utterance segment name
|
|
# duration: utterance segment time
|
|
# wav: utterance file path
|
|
# start: start point in the original wav file
|
|
# stop: stop point in the original wav file
|
|
# label: the utterance segment's label id
|
|
|
|
|
|
@dataclass
|
|
class meta_info:
|
|
"""the audio meta info in the vector CSVDataset
|
|
|
|
Args:
|
|
utt_id (str): the utterance segment name
|
|
duration (float): utterance segment time
|
|
wav (str): utterance file path
|
|
start (int): start point in the original wav file
|
|
stop (int): stop point in the original wav file
|
|
lab_id (str): the utterance segment's label id
|
|
"""
|
|
utt_id: str
|
|
duration: float
|
|
wav: str
|
|
start: int
|
|
stop: int
|
|
label: str
|
|
|
|
|
|
# csv dataset support feature type
|
|
# raw: return the pcm data sample point
|
|
# melspectrogram: fbank feature
|
|
feat_funcs = {
|
|
'raw': None,
|
|
'melspectrogram': melspectrogram,
|
|
}
|
|
|
|
|
|
class CSVDataset(Dataset):
|
|
def __init__(self,
|
|
csv_path,
|
|
label2id_path=None,
|
|
config=None,
|
|
random_chunk=True,
|
|
feat_type: str="raw",
|
|
n_train_snts: int=-1,
|
|
**kwargs):
|
|
"""Implement the CSV Dataset
|
|
|
|
Args:
|
|
csv_path (str): csv dataset file path
|
|
label2id_path (str): the utterance label to integer id map file path
|
|
config (CfgNode): yaml config
|
|
feat_type (str): dataset feature type. if it is raw, it return pcm data.
|
|
n_train_snts (int): select the n_train_snts sample from the dataset.
|
|
if n_train_snts = -1, dataset will load all the sample.
|
|
Default value is -1.
|
|
kwargs : feature type args
|
|
"""
|
|
super().__init__()
|
|
self.csv_path = csv_path
|
|
self.label2id_path = label2id_path
|
|
self.config = config
|
|
self.random_chunk = random_chunk
|
|
self.feat_type = feat_type
|
|
self.n_train_snts = n_train_snts
|
|
self.feat_config = kwargs
|
|
self.id2label = {}
|
|
self.label2id = {}
|
|
self.data = self.load_data_csv()
|
|
self.load_speaker_to_label()
|
|
|
|
def load_data_csv(self):
|
|
"""Load the csv dataset content and store them in the data property
|
|
the csv dataset's format has six fields,
|
|
that is audio_id or utt_id, audio duration, segment start point, segment stop point
|
|
and utterance label.
|
|
Note in training period, the utterance label must has a map to integer id in label2id_path
|
|
|
|
Returns:
|
|
list: the csv data with meta_info type
|
|
"""
|
|
data = []
|
|
|
|
with open(self.csv_path, 'r') as rf:
|
|
for line in rf.readlines()[1:]:
|
|
audio_id, duration, wav, start, stop, spk_id = line.strip(
|
|
).split(',')
|
|
data.append(
|
|
meta_info(audio_id,
|
|
float(duration), wav,
|
|
int(start), int(stop), spk_id))
|
|
if self.n_train_snts > 0:
|
|
sample_num = min(self.n_train_snts, len(data))
|
|
data = data[0:sample_num]
|
|
|
|
return data
|
|
|
|
def load_speaker_to_label(self):
|
|
"""Load the utterance label map content.
|
|
In vector domain, we call the utterance label as speaker label.
|
|
The speaker label is real speaker label in speaker verification domain,
|
|
and in language identification is language label.
|
|
"""
|
|
if not self.label2id_path:
|
|
logger.warning("No speaker id to label file")
|
|
return
|
|
|
|
with open(self.label2id_path, 'r') as f:
|
|
for line in f.readlines():
|
|
label_name, label_id = line.strip().split(' ')
|
|
self.label2id[label_name] = int(label_id)
|
|
self.id2label[int(label_id)] = label_name
|
|
|
|
def convert_to_record(self, idx: int):
|
|
"""convert the dataset sample to training record the CSV Dataset
|
|
|
|
Args:
|
|
idx (int) : the request index in all the dataset
|
|
"""
|
|
sample = self.data[idx]
|
|
|
|
record = {}
|
|
# To show all fields in a namedtuple: `type(sample)._fields`
|
|
for field in fields(sample):
|
|
record[field.name] = getattr(sample, field.name)
|
|
|
|
waveform, sr = load_audio(record['wav'])
|
|
|
|
# random select a chunk audio samples from the audio
|
|
if self.config and self.config.random_chunk:
|
|
num_wav_samples = waveform.shape[0]
|
|
num_chunk_samples = int(self.config.chunk_duration * sr)
|
|
start = random.randint(0, num_wav_samples - num_chunk_samples - 1)
|
|
stop = start + num_chunk_samples
|
|
else:
|
|
start = record['start']
|
|
stop = record['stop']
|
|
|
|
# we only return the waveform as feat
|
|
waveform = waveform[start:stop]
|
|
|
|
# all availabel feature type is in feat_funcs
|
|
assert self.feat_type in feat_funcs.keys(), \
|
|
f"Unknown feat_type: {self.feat_type}, it must be one in {list(feat_funcs.keys())}"
|
|
feat_func = feat_funcs[self.feat_type]
|
|
feat = feat_func(
|
|
waveform, sr=sr, **self.feat_config) if feat_func else waveform
|
|
|
|
record.update({'feat': feat})
|
|
if self.label2id:
|
|
record.update({'label': self.label2id[record['label']]})
|
|
|
|
return record
|
|
|
|
def __getitem__(self, idx):
|
|
"""Return the specific index sample
|
|
|
|
Args:
|
|
idx (int) : the request index in all the dataset
|
|
"""
|
|
return self.convert_to_record(idx)
|
|
|
|
def __len__(self):
|
|
"""Return the dataset length
|
|
|
|
Returns:
|
|
int: the length num of the dataset
|
|
"""
|
|
return len(self.data)
|