You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
460 lines
14 KiB
460 lines
14 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import math
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
from paddle.fluid.layers import sequence_mask
|
|
from paddle.nn import functional as F
|
|
from scipy import signal
|
|
|
|
|
|
# Loss for Tacotron2
|
|
def attention_guide(dec_lens, enc_lens, N, T, g, dtype=None):
|
|
"""Build that W matrix. shape(B, T_dec, T_enc)
|
|
W[i, n, t] = 1 - exp(-(n/dec_lens[i] - t/enc_lens[i])**2 / (2g**2))
|
|
|
|
See also:
|
|
Tachibana, Hideyuki, Katsuya Uenoyama, and Shunsuke Aihara. 2017. “Efficiently Trainable Text-to-Speech System Based on Deep Convolutional Networks with Guided Attention.” ArXiv:1710.08969 [Cs, Eess], October. http://arxiv.org/abs/1710.08969.
|
|
"""
|
|
dtype = dtype or paddle.get_default_dtype()
|
|
dec_pos = paddle.arange(0, N).astype(dtype) / dec_lens.unsqueeze(
|
|
-1) # n/N # shape(B, T_dec)
|
|
enc_pos = paddle.arange(0, T).astype(dtype) / enc_lens.unsqueeze(
|
|
-1) # t/T # shape(B, T_enc)
|
|
W = 1 - paddle.exp(-(dec_pos.unsqueeze(-1) - enc_pos.unsqueeze(1))**2 /
|
|
(2 * g**2))
|
|
|
|
dec_mask = sequence_mask(dec_lens, maxlen=N)
|
|
enc_mask = sequence_mask(enc_lens, maxlen=T)
|
|
mask = dec_mask.unsqueeze(-1) * enc_mask.unsqueeze(1)
|
|
mask = paddle.cast(mask, W.dtype)
|
|
|
|
W *= mask
|
|
return W
|
|
|
|
|
|
def guided_attention_loss(attention_weight, dec_lens, enc_lens, g):
|
|
"""Guided attention loss, masked to excluded padding parts."""
|
|
_, N, T = attention_weight.shape
|
|
W = attention_guide(dec_lens, enc_lens, N, T, g, attention_weight.dtype)
|
|
|
|
total_tokens = (dec_lens * enc_lens).astype(W.dtype)
|
|
loss = paddle.mean(paddle.sum(W * attention_weight, [1, 2]) / total_tokens)
|
|
return loss
|
|
|
|
|
|
# Losses for GAN Vocoder
|
|
def stft(x,
|
|
fft_size,
|
|
hop_length=None,
|
|
win_length=None,
|
|
window='hann',
|
|
center=True,
|
|
pad_mode='reflect'):
|
|
"""Perform STFT and convert to magnitude spectrogram.
|
|
Parameters
|
|
----------
|
|
x : Tensor
|
|
Input signal tensor (B, T).
|
|
fft_size : int
|
|
FFT size.
|
|
hop_size : int
|
|
Hop size.
|
|
win_length : int
|
|
window : str, optional
|
|
window : str
|
|
Name of window function, see `scipy.signal.get_window` for more
|
|
details. Defaults to "hann".
|
|
center : bool, optional
|
|
center (bool, optional): Whether to pad `x` to make that the
|
|
:math:`t \times hop\_length` at the center of :math:`t`-th frame. Default: `True`.
|
|
pad_mode : str, optional
|
|
Choose padding pattern when `center` is `True`.
|
|
Returns
|
|
----------
|
|
Tensor:
|
|
Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
|
|
"""
|
|
# calculate window
|
|
window = signal.get_window(window, win_length, fftbins=True)
|
|
window = paddle.to_tensor(window)
|
|
x_stft = paddle.signal.stft(
|
|
x,
|
|
fft_size,
|
|
hop_length,
|
|
win_length,
|
|
window=window,
|
|
center=center,
|
|
pad_mode=pad_mode)
|
|
|
|
real = x_stft.real()
|
|
imag = x_stft.imag()
|
|
|
|
return paddle.sqrt(paddle.clip(real**2 + imag**2, min=1e-7)).transpose(
|
|
[0, 2, 1])
|
|
|
|
|
|
class SpectralConvergenceLoss(nn.Layer):
|
|
"""Spectral convergence loss module."""
|
|
|
|
def __init__(self):
|
|
"""Initilize spectral convergence loss module."""
|
|
super().__init__()
|
|
|
|
def forward(self, x_mag, y_mag):
|
|
"""Calculate forward propagation.
|
|
Parameters
|
|
----------
|
|
x_mag : Tensor
|
|
Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
|
|
y_mag : Tensor)
|
|
Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
|
|
Returns
|
|
----------
|
|
Tensor
|
|
Spectral convergence loss value.
|
|
"""
|
|
return paddle.norm(
|
|
y_mag - x_mag, p="fro") / paddle.clip(
|
|
paddle.norm(y_mag, p="fro"), min=1e-10)
|
|
|
|
|
|
class LogSTFTMagnitudeLoss(nn.Layer):
|
|
"""Log STFT magnitude loss module."""
|
|
|
|
def __init__(self, epsilon=1e-7):
|
|
"""Initilize los STFT magnitude loss module."""
|
|
super().__init__()
|
|
self.epsilon = epsilon
|
|
|
|
def forward(self, x_mag, y_mag):
|
|
"""Calculate forward propagation.
|
|
Parameters
|
|
----------
|
|
x_mag : Tensor
|
|
Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
|
|
y_mag : Tensor
|
|
Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
|
|
Returns
|
|
----------
|
|
Tensor
|
|
Log STFT magnitude loss value.
|
|
"""
|
|
return F.l1_loss(
|
|
paddle.log(paddle.clip(y_mag, min=self.epsilon)),
|
|
paddle.log(paddle.clip(x_mag, min=self.epsilon)))
|
|
|
|
|
|
class STFTLoss(nn.Layer):
|
|
"""STFT loss module."""
|
|
|
|
def __init__(self,
|
|
fft_size=1024,
|
|
shift_size=120,
|
|
win_length=600,
|
|
window="hann"):
|
|
"""Initialize STFT loss module."""
|
|
super().__init__()
|
|
self.fft_size = fft_size
|
|
self.shift_size = shift_size
|
|
self.win_length = win_length
|
|
self.window = window
|
|
self.spectral_convergence_loss = SpectralConvergenceLoss()
|
|
self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss()
|
|
|
|
def forward(self, x, y):
|
|
"""Calculate forward propagation.
|
|
Parameters
|
|
----------
|
|
x : Tensor
|
|
Predicted signal (B, T).
|
|
y : Tensor
|
|
Groundtruth signal (B, T).
|
|
Returns
|
|
----------
|
|
Tensor
|
|
Spectral convergence loss value.
|
|
Tensor
|
|
Log STFT magnitude loss value.
|
|
"""
|
|
x_mag = stft(x, self.fft_size, self.shift_size, self.win_length,
|
|
self.window)
|
|
y_mag = stft(y, self.fft_size, self.shift_size, self.win_length,
|
|
self.window)
|
|
sc_loss = self.spectral_convergence_loss(x_mag, y_mag)
|
|
mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)
|
|
|
|
return sc_loss, mag_loss
|
|
|
|
|
|
class MultiResolutionSTFTLoss(nn.Layer):
|
|
"""Multi resolution STFT loss module."""
|
|
|
|
def __init__(
|
|
self,
|
|
fft_sizes=[1024, 2048, 512],
|
|
hop_sizes=[120, 240, 50],
|
|
win_lengths=[600, 1200, 240],
|
|
window="hann", ):
|
|
"""Initialize Multi resolution STFT loss module.
|
|
Parameters
|
|
----------
|
|
fft_sizes : list
|
|
List of FFT sizes.
|
|
hop_sizes : list
|
|
List of hop sizes.
|
|
win_lengths : list
|
|
List of window lengths.
|
|
window : str
|
|
Window function type.
|
|
"""
|
|
super().__init__()
|
|
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
|
|
self.stft_losses = nn.LayerList()
|
|
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
|
|
self.stft_losses.append(STFTLoss(fs, ss, wl, window))
|
|
|
|
def forward(self, x, y):
|
|
"""Calculate forward propagation.
|
|
Parameters
|
|
----------
|
|
x : Tensor
|
|
Predicted signal (B, T) or (B, #subband, T).
|
|
y : Tensor
|
|
Groundtruth signal (B, T) or (B, #subband, T).
|
|
Returns
|
|
----------
|
|
Tensor
|
|
Multi resolution spectral convergence loss value.
|
|
Tensor
|
|
Multi resolution log STFT magnitude loss value.
|
|
"""
|
|
if len(x.shape) == 3:
|
|
# (B, C, T) -> (B x C, T)
|
|
x = x.reshape([-1, x.shape[2]])
|
|
# (B, C, T) -> (B x C, T)
|
|
y = y.reshape([-1, y.shape[2]])
|
|
sc_loss = 0.0
|
|
mag_loss = 0.0
|
|
for f in self.stft_losses:
|
|
sc_l, mag_l = f(x, y)
|
|
sc_loss += sc_l
|
|
mag_loss += mag_l
|
|
sc_loss /= len(self.stft_losses)
|
|
mag_loss /= len(self.stft_losses)
|
|
|
|
return sc_loss, mag_loss
|
|
|
|
|
|
class GeneratorAdversarialLoss(nn.Layer):
|
|
"""Generator adversarial loss module."""
|
|
|
|
def __init__(
|
|
self,
|
|
average_by_discriminators=True,
|
|
loss_type="mse", ):
|
|
"""Initialize GeneratorAversarialLoss module."""
|
|
super().__init__()
|
|
self.average_by_discriminators = average_by_discriminators
|
|
assert loss_type in ["mse", "hinge"], f"{loss_type} is not supported."
|
|
if loss_type == "mse":
|
|
self.criterion = self._mse_loss
|
|
else:
|
|
self.criterion = self._hinge_loss
|
|
|
|
def forward(self, outputs):
|
|
"""Calcualate generator adversarial loss.
|
|
Parameters
|
|
----------
|
|
outputs: Tensor or List
|
|
Discriminator outputs or list of discriminator outputs.
|
|
Returns
|
|
----------
|
|
Tensor
|
|
Generator adversarial loss value.
|
|
"""
|
|
if isinstance(outputs, (tuple, list)):
|
|
adv_loss = 0.0
|
|
for i, outputs_ in enumerate(outputs):
|
|
if isinstance(outputs_, (tuple, list)):
|
|
# case including feature maps
|
|
outputs_ = outputs_[-1]
|
|
adv_loss += self.criterion(outputs_)
|
|
if self.average_by_discriminators:
|
|
adv_loss /= i + 1
|
|
else:
|
|
adv_loss = self.criterion(outputs)
|
|
|
|
return adv_loss
|
|
|
|
def _mse_loss(self, x):
|
|
return F.mse_loss(x, paddle.ones_like(x))
|
|
|
|
def _hinge_loss(self, x):
|
|
return -x.mean()
|
|
|
|
|
|
class DiscriminatorAdversarialLoss(nn.Layer):
|
|
"""Discriminator adversarial loss module."""
|
|
|
|
def __init__(
|
|
self,
|
|
average_by_discriminators=True,
|
|
loss_type="mse", ):
|
|
"""Initialize DiscriminatorAversarialLoss module."""
|
|
super().__init__()
|
|
self.average_by_discriminators = average_by_discriminators
|
|
assert loss_type in ["mse"], f"{loss_type} is not supported."
|
|
if loss_type == "mse":
|
|
self.fake_criterion = self._mse_fake_loss
|
|
self.real_criterion = self._mse_real_loss
|
|
|
|
def forward(self, outputs_hat, outputs):
|
|
"""Calcualate discriminator adversarial loss.
|
|
Parameters
|
|
----------
|
|
outputs_hat : Tensor or list
|
|
Discriminator outputs or list of
|
|
discriminator outputs calculated from generator outputs.
|
|
outputs : Tensor or list
|
|
Discriminator outputs or list of
|
|
discriminator outputs calculated from groundtruth.
|
|
Returns
|
|
----------
|
|
Tensor
|
|
Discriminator real loss value.
|
|
Tensor
|
|
Discriminator fake loss value.
|
|
"""
|
|
if isinstance(outputs, (tuple, list)):
|
|
real_loss = 0.0
|
|
fake_loss = 0.0
|
|
for i, (outputs_hat_,
|
|
outputs_) in enumerate(zip(outputs_hat, outputs)):
|
|
if isinstance(outputs_hat_, (tuple, list)):
|
|
# case including feature maps
|
|
outputs_hat_ = outputs_hat_[-1]
|
|
outputs_ = outputs_[-1]
|
|
real_loss += self.real_criterion(outputs_)
|
|
fake_loss += self.fake_criterion(outputs_hat_)
|
|
if self.average_by_discriminators:
|
|
fake_loss /= i + 1
|
|
real_loss /= i + 1
|
|
else:
|
|
real_loss = self.real_criterion(outputs)
|
|
fake_loss = self.fake_criterion(outputs_hat)
|
|
|
|
return real_loss, fake_loss
|
|
|
|
def _mse_real_loss(self, x):
|
|
return F.mse_loss(x, paddle.ones_like(x))
|
|
|
|
def _mse_fake_loss(self, x):
|
|
return F.mse_loss(x, paddle.zeros_like(x))
|
|
|
|
|
|
# Losses for SpeedySpeech
|
|
# Structural Similarity Index Measure (SSIM)
|
|
def gaussian(window_size, sigma):
|
|
gauss = paddle.to_tensor([
|
|
math.exp(-(x - window_size // 2)**2 / float(2 * sigma**2))
|
|
for x in range(window_size)
|
|
])
|
|
return gauss / gauss.sum()
|
|
|
|
|
|
def create_window(window_size, channel):
|
|
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
|
_2D_window = paddle.matmul(_1D_window, paddle.transpose(
|
|
_1D_window, [1, 0])).unsqueeze([0, 1])
|
|
window = paddle.expand(_2D_window, [channel, 1, window_size, window_size])
|
|
return window
|
|
|
|
|
|
def _ssim(img1, img2, window, window_size, channel, size_average=True):
|
|
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
|
|
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
|
|
|
|
mu1_sq = mu1.pow(2)
|
|
mu2_sq = mu2.pow(2)
|
|
mu1_mu2 = mu1 * mu2
|
|
|
|
sigma1_sq = F.conv2d(
|
|
img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
|
|
sigma2_sq = F.conv2d(
|
|
img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
|
|
sigma12 = F.conv2d(
|
|
img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
|
|
|
|
C1 = 0.01**2
|
|
C2 = 0.03**2
|
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) \
|
|
/ ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
|
|
|
|
if size_average:
|
|
return ssim_map.mean()
|
|
else:
|
|
return ssim_map.mean(1).mean(1).mean(1)
|
|
|
|
|
|
def ssim(img1, img2, window_size=11, size_average=True):
|
|
(_, channel, _, _) = img1.shape
|
|
window = create_window(window_size, channel)
|
|
return _ssim(img1, img2, window, window_size, channel, size_average)
|
|
|
|
|
|
def weighted_mean(input, weight):
|
|
"""Weighted mean. It can also be used as masked mean.
|
|
|
|
Parameters
|
|
-----------
|
|
input : Tensor
|
|
The input tensor.
|
|
weight : Tensor
|
|
The weight tensor with broadcastable shape with the input.
|
|
|
|
Returns
|
|
----------
|
|
Tensor [shape=(1,)]
|
|
Weighted mean tensor with the same dtype as input.
|
|
"""
|
|
weight = paddle.cast(weight, input.dtype)
|
|
broadcast_ratio = input.size / weight.size
|
|
return paddle.sum(input * weight) / (paddle.sum(weight) * broadcast_ratio)
|
|
|
|
|
|
def masked_l1_loss(prediction, target, mask):
|
|
"""Compute maksed L1 loss.
|
|
|
|
Parameters
|
|
----------
|
|
prediction : Tensor
|
|
The prediction.
|
|
target : Tensor
|
|
The target. The shape should be broadcastable to ``prediction``.
|
|
mask : Tensor
|
|
The mask. The shape should be broadcatable to the broadcasted shape of
|
|
``prediction`` and ``target``.
|
|
|
|
Returns
|
|
-------
|
|
Tensor [shape=(1,)]
|
|
The masked L1 loss.
|
|
"""
|
|
abs_error = F.l1_loss(prediction, target, reduction='none')
|
|
loss = weighted_mean(abs_error, mask)
|
|
return loss
|