You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
2.5 KiB
83 lines
2.5 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Causal convolusion layer modules."""
|
|
import paddle
|
|
from paddle import nn
|
|
|
|
|
|
class CausalConv1D(nn.Layer):
|
|
"""CausalConv1D module with customized initialization."""
|
|
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
dilation=1,
|
|
bias=True,
|
|
pad="Pad1D",
|
|
pad_params={"value": 0.0}, ):
|
|
"""Initialize CausalConv1d module."""
|
|
super().__init__()
|
|
self.pad = getattr(paddle.nn, pad)((kernel_size - 1) * dilation,
|
|
**pad_params)
|
|
self.conv = nn.Conv1D(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
dilation=dilation,
|
|
bias_attr=bias)
|
|
|
|
def forward(self, x):
|
|
"""Calculate forward propagation.
|
|
Parameters
|
|
----------
|
|
x : Tensor
|
|
Input tensor (B, in_channels, T).
|
|
Returns
|
|
----------
|
|
Tensor
|
|
Output tensor (B, out_channels, T).
|
|
"""
|
|
return self.conv(self.pad(x))[:, :, :x.shape[2]]
|
|
|
|
|
|
class CausalConv1DTranspose(nn.Layer):
|
|
"""CausalConv1DTranspose module with customized initialization."""
|
|
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
bias=True):
|
|
"""Initialize CausalConvTranspose1d module."""
|
|
super().__init__()
|
|
self.deconv = nn.Conv1DTranspose(
|
|
in_channels, out_channels, kernel_size, stride, bias_attr=bias)
|
|
self.stride = stride
|
|
|
|
def forward(self, x):
|
|
"""Calculate forward propagation.
|
|
Parameters
|
|
----------
|
|
x : Tensor
|
|
Input tensor (B, in_channels, T_in).
|
|
Returns
|
|
----------
|
|
Tensor
|
|
Output tensor (B, out_channels, T_out).
|
|
"""
|
|
return self.deconv(x)[:, :, :-self.stride]
|