You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
5.3 KiB
168 lines
5.3 KiB
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
from pathlib import Path
|
|
|
|
import jsonlines
|
|
import numpy as np
|
|
import onnxruntime as ort
|
|
import soundfile as sf
|
|
from timer import timer
|
|
|
|
from paddlespeech.t2s.exps.syn_utils import get_test_dataset
|
|
from paddlespeech.t2s.utils import str2bool
|
|
|
|
|
|
def get_sess(args, filed='am'):
|
|
full_name = ''
|
|
if filed == 'am':
|
|
full_name = args.am
|
|
elif filed == 'voc':
|
|
full_name = args.voc
|
|
model_dir = str(Path(args.inference_dir) / (full_name + ".onnx"))
|
|
sess_options = ort.SessionOptions()
|
|
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
|
|
sess_options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
|
|
|
|
if args.device == "gpu":
|
|
# fastspeech2/mb_melgan can't use trt now!
|
|
if args.use_trt:
|
|
providers = ['TensorrtExecutionProvider']
|
|
else:
|
|
providers = ['CUDAExecutionProvider']
|
|
elif args.device == "cpu":
|
|
providers = ['CPUExecutionProvider']
|
|
sess_options.intra_op_num_threads = args.cpu_threads
|
|
sess = ort.InferenceSession(
|
|
model_dir, providers=providers, sess_options=sess_options)
|
|
return sess
|
|
|
|
|
|
def ort_predict(args):
|
|
# construct dataset for evaluation
|
|
with jsonlines.open(args.test_metadata, 'r') as reader:
|
|
test_metadata = list(reader)
|
|
am_name = args.am[:args.am.rindex('_')]
|
|
am_dataset = args.am[args.am.rindex('_') + 1:]
|
|
test_dataset = get_test_dataset(args, test_metadata, am_name, am_dataset)
|
|
|
|
output_dir = Path(args.output_dir)
|
|
output_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
fs = 24000 if am_dataset != 'ljspeech' else 22050
|
|
|
|
# am
|
|
am_sess = get_sess(args, filed='am')
|
|
|
|
# vocoder
|
|
voc_sess = get_sess(args, filed='voc')
|
|
|
|
# am warmup
|
|
for T in [27, 38, 54]:
|
|
am_input_feed = {}
|
|
if am_name == 'fastspeech2':
|
|
phone_ids = np.random.randint(1, 266, size=(T, ))
|
|
am_input_feed.update({'text': phone_ids})
|
|
elif am_name == 'speedyspeech':
|
|
phone_ids = np.random.randint(1, 92, size=(T, ))
|
|
tone_ids = np.random.randint(1, 5, size=(T, ))
|
|
am_input_feed.update({'phones': phone_ids, 'tones': tone_ids})
|
|
am_sess.run(None, input_feed=am_input_feed)
|
|
|
|
# voc warmup
|
|
for T in [227, 308, 544]:
|
|
data = np.random.rand(T, 80).astype("float32")
|
|
voc_sess.run(None, {"logmel": data})
|
|
print("warm up done!")
|
|
|
|
N = 0
|
|
T = 0
|
|
am_input_feed = {}
|
|
for example in test_dataset:
|
|
utt_id = example['utt_id']
|
|
if am_name == 'fastspeech2':
|
|
phone_ids = example["text"]
|
|
am_input_feed.update({'text': phone_ids})
|
|
elif am_name == 'speedyspeech':
|
|
phone_ids = example["phones"]
|
|
tone_ids = example["tones"]
|
|
am_input_feed.update({'phones': phone_ids, 'tones': tone_ids})
|
|
with timer() as t:
|
|
mel = am_sess.run(output_names=None, input_feed=am_input_feed)
|
|
mel = mel[0]
|
|
wav = voc_sess.run(output_names=None, input_feed={'logmel': mel})
|
|
N += len(wav[0])
|
|
T += t.elapse
|
|
speed = len(wav[0]) / t.elapse
|
|
rtf = fs / speed
|
|
sf.write(
|
|
str(output_dir / (utt_id + ".wav")),
|
|
np.array(wav)[0],
|
|
samplerate=fs)
|
|
print(
|
|
f"{utt_id}, mel: {mel.shape}, wave: {len(wav[0])}, time: {t.elapse}s, Hz: {speed}, RTF: {rtf}."
|
|
)
|
|
print(f"generation speed: {N / T}Hz, RTF: {fs / (N / T) }")
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description="Infernce with onnxruntime.")
|
|
# acoustic model
|
|
parser.add_argument(
|
|
'--am',
|
|
type=str,
|
|
default='fastspeech2_csmsc',
|
|
choices=['fastspeech2_csmsc', 'speedyspeech_csmsc'],
|
|
help='Choose acoustic model type of tts task.')
|
|
|
|
# voc
|
|
parser.add_argument(
|
|
'--voc',
|
|
type=str,
|
|
default='hifigan_csmsc',
|
|
choices=['hifigan_csmsc', 'mb_melgan_csmsc'],
|
|
help='Choose vocoder type of tts task.')
|
|
# other
|
|
parser.add_argument(
|
|
"--inference_dir", type=str, help="dir to save inference models")
|
|
parser.add_argument("--test_metadata", type=str, help="test metadata.")
|
|
parser.add_argument("--output_dir", type=str, help="output dir")
|
|
|
|
# inference
|
|
parser.add_argument(
|
|
"--use_trt",
|
|
type=str2bool,
|
|
default=False,
|
|
help="Whether to use inference engin TensorRT.", )
|
|
|
|
parser.add_argument(
|
|
"--device",
|
|
default="gpu",
|
|
choices=["gpu", "cpu"],
|
|
help="Device selected for inference.", )
|
|
parser.add_argument('--cpu_threads', type=int, default=1)
|
|
|
|
args, _ = parser.parse_known_args()
|
|
return args
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
ort_predict(args)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|