You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
235 lines
7.8 KiB
235 lines
7.8 KiB
# Copyright (c) 2021 Jingyong Hou (houjingyong@gmail.com)
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# Modified from wekws(https://github.com/wenet-e2e/wekws)
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
|
|
|
|
class DSDilatedConv1d(nn.Layer):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
out_channels: int,
|
|
kernel_size: int,
|
|
dilation: int=1,
|
|
stride: int=1,
|
|
bias: bool=True, ):
|
|
super(DSDilatedConv1d, self).__init__()
|
|
self.receptive_fields = dilation * (kernel_size - 1)
|
|
self.conv = nn.Conv1D(
|
|
in_channels,
|
|
in_channels,
|
|
kernel_size,
|
|
padding=0,
|
|
dilation=dilation,
|
|
stride=stride,
|
|
groups=in_channels,
|
|
bias_attr=bias, )
|
|
self.bn = nn.BatchNorm1D(in_channels)
|
|
self.pointwise = nn.Conv1D(
|
|
in_channels,
|
|
out_channels,
|
|
kernel_size=1,
|
|
padding=0,
|
|
dilation=1,
|
|
bias_attr=bias)
|
|
|
|
def forward(self, inputs: paddle.Tensor):
|
|
outputs = self.conv(inputs)
|
|
outputs = self.bn(outputs)
|
|
outputs = self.pointwise(outputs)
|
|
return outputs
|
|
|
|
|
|
class TCNBlock(nn.Layer):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
res_channels: int,
|
|
kernel_size: int,
|
|
dilation: int,
|
|
causal: bool, ):
|
|
super(TCNBlock, self).__init__()
|
|
self.in_channels = in_channels
|
|
self.res_channels = res_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation = dilation
|
|
self.causal = causal
|
|
self.receptive_fields = dilation * (kernel_size - 1)
|
|
self.half_receptive_fields = self.receptive_fields // 2
|
|
self.conv1 = DSDilatedConv1d(
|
|
in_channels=in_channels,
|
|
out_channels=res_channels,
|
|
kernel_size=kernel_size,
|
|
dilation=dilation, )
|
|
self.bn1 = nn.BatchNorm1D(res_channels)
|
|
self.relu1 = nn.ReLU()
|
|
|
|
self.conv2 = nn.Conv1D(
|
|
in_channels=res_channels, out_channels=res_channels, kernel_size=1)
|
|
self.bn2 = nn.BatchNorm1D(res_channels)
|
|
self.relu2 = nn.ReLU()
|
|
|
|
def forward(self, inputs: paddle.Tensor):
|
|
outputs = self.relu1(self.bn1(self.conv1(inputs)))
|
|
outputs = self.bn2(self.conv2(outputs))
|
|
if self.causal:
|
|
inputs = inputs[:, :, self.receptive_fields:]
|
|
else:
|
|
inputs = inputs[:, :, self.half_receptive_fields:
|
|
-self.half_receptive_fields]
|
|
if self.in_channels == self.res_channels:
|
|
res_out = self.relu2(outputs + inputs)
|
|
else:
|
|
res_out = self.relu2(outputs)
|
|
return res_out
|
|
|
|
|
|
class TCNStack(nn.Layer):
|
|
def __init__(
|
|
self,
|
|
in_channels: int,
|
|
stack_num: int,
|
|
stack_size: int,
|
|
res_channels: int,
|
|
kernel_size: int,
|
|
causal: bool, ):
|
|
super(TCNStack, self).__init__()
|
|
self.in_channels = in_channels
|
|
self.stack_num = stack_num
|
|
self.stack_size = stack_size
|
|
self.res_channels = res_channels
|
|
self.kernel_size = kernel_size
|
|
self.causal = causal
|
|
self.res_blocks = self.stack_tcn_blocks()
|
|
self.receptive_fields = self.calculate_receptive_fields()
|
|
self.res_blocks = nn.Sequential(*self.res_blocks)
|
|
|
|
def calculate_receptive_fields(self):
|
|
receptive_fields = 0
|
|
for block in self.res_blocks:
|
|
receptive_fields += block.receptive_fields
|
|
return receptive_fields
|
|
|
|
def build_dilations(self):
|
|
dilations = []
|
|
for s in range(0, self.stack_size):
|
|
for l in range(0, self.stack_num):
|
|
dilations.append(2**l)
|
|
return dilations
|
|
|
|
def stack_tcn_blocks(self):
|
|
dilations = self.build_dilations()
|
|
res_blocks = nn.LayerList()
|
|
|
|
res_blocks.append(
|
|
TCNBlock(
|
|
self.in_channels,
|
|
self.res_channels,
|
|
self.kernel_size,
|
|
dilations[0],
|
|
self.causal, ))
|
|
for dilation in dilations[1:]:
|
|
res_blocks.append(
|
|
TCNBlock(
|
|
self.res_channels,
|
|
self.res_channels,
|
|
self.kernel_size,
|
|
dilation,
|
|
self.causal, ))
|
|
return res_blocks
|
|
|
|
def forward(self, inputs: paddle.Tensor):
|
|
outputs = self.res_blocks(inputs)
|
|
return outputs
|
|
|
|
|
|
class MDTC(nn.Layer):
|
|
def __init__(
|
|
self,
|
|
stack_num: int,
|
|
stack_size: int,
|
|
in_channels: int,
|
|
res_channels: int,
|
|
kernel_size: int,
|
|
causal: bool=True, ):
|
|
super(MDTC, self).__init__()
|
|
assert kernel_size % 2 == 1
|
|
self.kernel_size = kernel_size
|
|
self.causal = causal
|
|
self.preprocessor = TCNBlock(
|
|
in_channels, res_channels, kernel_size, dilation=1, causal=causal)
|
|
self.relu = nn.ReLU()
|
|
self.blocks = nn.LayerList()
|
|
self.receptive_fields = self.preprocessor.receptive_fields
|
|
for i in range(stack_num):
|
|
self.blocks.append(
|
|
TCNStack(res_channels, stack_size, 1, res_channels, kernel_size,
|
|
causal))
|
|
self.receptive_fields += self.blocks[-1].receptive_fields
|
|
self.half_receptive_fields = self.receptive_fields // 2
|
|
self.hidden_dim = res_channels
|
|
|
|
def forward(self, x: paddle.Tensor):
|
|
if self.causal:
|
|
outputs = F.pad(x, (0, 0, self.receptive_fields, 0, 0, 0),
|
|
'constant')
|
|
else:
|
|
outputs = F.pad(
|
|
x,
|
|
(0, 0, self.half_receptive_fields, self.half_receptive_fields,
|
|
0, 0),
|
|
'constant', )
|
|
outputs = outputs.transpose([0, 2, 1])
|
|
outputs_list = []
|
|
outputs = self.relu(self.preprocessor(outputs))
|
|
for block in self.blocks:
|
|
outputs = block(outputs)
|
|
outputs_list.append(outputs)
|
|
|
|
normalized_outputs = []
|
|
output_size = outputs_list[-1].shape[-1]
|
|
for x in outputs_list:
|
|
remove_length = x.shape[-1] - output_size
|
|
if self.causal and remove_length > 0:
|
|
normalized_outputs.append(x[:, :, remove_length:])
|
|
elif not self.causal and remove_length > 1:
|
|
half_remove_length = remove_length // 2
|
|
normalized_outputs.append(
|
|
x[:, :, half_remove_length:-half_remove_length])
|
|
else:
|
|
normalized_outputs.append(x)
|
|
|
|
outputs = paddle.zeros_like(
|
|
outputs_list[-1], dtype=outputs_list[-1].dtype)
|
|
for x in normalized_outputs:
|
|
outputs += x
|
|
outputs = outputs.transpose([0, 2, 1])
|
|
return outputs, None
|
|
|
|
|
|
class KWSModel(nn.Layer):
|
|
def __init__(self, backbone, num_keywords):
|
|
super(KWSModel, self).__init__()
|
|
self.backbone = backbone
|
|
self.linear = nn.Linear(self.backbone.hidden_dim, num_keywords)
|
|
self.activation = nn.Sigmoid()
|
|
|
|
def forward(self, x):
|
|
outputs = self.backbone(x)
|
|
outputs = self.linear(outputs)
|
|
return self.activation(outputs)
|