You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
250 lines
8.3 KiB
250 lines
8.3 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# Modified from espnet(https://github.com/espnet/espnet)
|
|
from typing import Any
|
|
from typing import Dict
|
|
from typing import Text
|
|
from typing import Union
|
|
|
|
import paddle
|
|
from paddle.optimizer.lr import LRScheduler
|
|
from typeguard import check_argument_types
|
|
|
|
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
|
|
from paddlespeech.s2t.utils.dynamic_import import instance_class
|
|
from paddlespeech.s2t.utils.log import Log
|
|
|
|
__all__ = ["WarmupLR", "LRSchedulerFactory"]
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
SCHEDULER_DICT = {
|
|
"noam": "paddle.optimizer.lr:NoamDecay",
|
|
"expdecaylr": "paddle.optimizer.lr:ExponentialDecay",
|
|
"piecewisedecay": "paddle.optimizer.lr:PiecewiseDecay",
|
|
}
|
|
|
|
|
|
def register_scheduler(cls):
|
|
"""Register scheduler."""
|
|
alias = cls.__name__.lower()
|
|
SCHEDULER_DICT[cls.__name__.lower()] = cls.__module__ + ":" + cls.__name__
|
|
return cls
|
|
|
|
|
|
@register_scheduler
|
|
class WarmupLR(LRScheduler):
|
|
"""The WarmupLR scheduler
|
|
This scheduler is almost same as NoamLR Scheduler except for following
|
|
difference:
|
|
NoamLR:
|
|
lr = optimizer.lr * model_size ** -0.5
|
|
* min(step ** -0.5, step * warmup_step ** -1.5)
|
|
WarmupLR:
|
|
lr = optimizer.lr * warmup_step ** 0.5
|
|
* min(step ** -0.5, step * warmup_step ** -1.5)
|
|
Note that the maximum lr equals to optimizer.lr in this scheduler.
|
|
"""
|
|
|
|
def __init__(self,
|
|
warmup_steps: Union[int, float]=25000,
|
|
learning_rate=1.0,
|
|
last_epoch=-1,
|
|
verbose=False,
|
|
**kwargs):
|
|
assert check_argument_types()
|
|
self.warmup_steps = warmup_steps
|
|
super().__init__(learning_rate, last_epoch, verbose)
|
|
|
|
def __repr__(self):
|
|
return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps}, lr={self.base_lr}, last_epoch={self.last_epoch})"
|
|
|
|
def get_lr(self):
|
|
# self.last_epoch start from zero
|
|
step_num = self.last_epoch + 1
|
|
return self.base_lr * self.warmup_steps**0.5 * min(
|
|
step_num**-0.5, step_num * self.warmup_steps**-1.5)
|
|
|
|
def set_step(self, step: int=None):
|
|
'''
|
|
It will update the learning rate in optimizer according to current ``epoch`` .
|
|
The new learning rate will take effect on next ``optimizer.step`` .
|
|
|
|
Args:
|
|
step (int, None): specify current epoch. Default: None. Auto-increment from last_epoch=-1.
|
|
Returns:
|
|
None
|
|
'''
|
|
self.step(epoch=step)
|
|
|
|
|
|
@register_scheduler
|
|
class ConstantLR(LRScheduler):
|
|
"""
|
|
Args:
|
|
learning_rate (float): The initial learning rate. It is a python float number.
|
|
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
|
|
verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False`` .
|
|
|
|
Returns:
|
|
``ConstantLR`` instance to schedule learning rate.
|
|
"""
|
|
|
|
def __init__(self, learning_rate, last_epoch=-1, verbose=False):
|
|
super().__init__(learning_rate, last_epoch, verbose)
|
|
|
|
def get_lr(self):
|
|
return self.base_lr
|
|
|
|
|
|
@register_scheduler
|
|
class NewBobScheduler(LRScheduler):
|
|
"""Scheduler with new-bob technique, used for LR annealing.
|
|
|
|
The learning rate is annealed based on the validation performance.
|
|
In particular: if (past_loss-current_loss)/past_loss< impr_threshold:
|
|
lr=lr * annealing_factor.
|
|
|
|
Arguments
|
|
---------
|
|
initial_value : float
|
|
The initial hyperparameter value.
|
|
annealing_factor : float
|
|
It is annealing factor used in new_bob strategy.
|
|
improvement_threshold : float
|
|
It is the improvement rate between losses used to perform learning
|
|
annealing in new_bob strategy.
|
|
patient : int
|
|
When the annealing condition is violated patient times,
|
|
the learning rate is finally reduced.
|
|
|
|
Example
|
|
-------
|
|
>>> scheduler = NewBobScheduler(initial_value=1.0)
|
|
>>> scheduler(metric_value=10.0)
|
|
(1.0, 1.0)
|
|
>>> scheduler(metric_value=2.0)
|
|
(1.0, 1.0)
|
|
>>> scheduler(metric_value=2.5)
|
|
(1.0, 0.5)
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
learning_rate,
|
|
last_epoch=-1,
|
|
verbose=False,
|
|
annealing_factor=0.5,
|
|
improvement_threshold=0.0025,
|
|
patient=0, ):
|
|
self.hyperparam_value = learning_rate
|
|
self.annealing_factor = annealing_factor
|
|
self.improvement_threshold = improvement_threshold
|
|
self.patient = patient
|
|
self.metric_values = []
|
|
self.current_patient = self.patient
|
|
super().__init__(learning_rate, last_epoch, verbose)
|
|
|
|
def step(self, metric_value=None):
|
|
"""
|
|
|
|
``step`` should be called after ``optimizer.step`` . It will update the learning rate in optimizer according to current ``epoch`` .
|
|
The new learning rate will take effect on next ``optimizer.step`` .
|
|
|
|
Args:
|
|
epoch (int, None): specify current epoch. Default: None. Auto-increment from last_epoch=-1.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
if metric_value is None:
|
|
self.last_epoch += 1
|
|
self.last_lr = self.hyperparam_value
|
|
else:
|
|
self.last_epoch += 1
|
|
self.last_lr = self.get_lr(metric_value)
|
|
|
|
if self.verbose:
|
|
print('Epoch {}: {} set learning rate to {}.'.format(
|
|
self.last_epoch, self.__class__.__name__, self.last_lr))
|
|
|
|
def get_lr(self, metric_value):
|
|
"""Returns the current and new value for the hyperparameter.
|
|
|
|
Arguments
|
|
---------
|
|
metric_value : int
|
|
A number for determining whether to change the hyperparameter value.
|
|
"""
|
|
new_value = self.hyperparam_value
|
|
if len(self.metric_values) > 0:
|
|
prev_metric = self.metric_values[-1]
|
|
# Update value if improvement too small and patience is 0
|
|
if prev_metric == 0: # Prevent division by zero
|
|
improvement = 0
|
|
else:
|
|
improvement = (prev_metric - metric_value) / prev_metric
|
|
if improvement < self.improvement_threshold:
|
|
if self.current_patient == 0:
|
|
new_value *= self.annealing_factor
|
|
self.current_patient = self.patient
|
|
else:
|
|
self.current_patient -= 1
|
|
|
|
# Store relevant info
|
|
self.metric_values.append(metric_value)
|
|
self.hyperparam_value = new_value
|
|
|
|
return new_value
|
|
|
|
def save(self):
|
|
"""Saves the current metrics on the specified path."""
|
|
data = {
|
|
"current_epoch_index": self.last_epoch,
|
|
"hyperparam_value": self.hyperparam_value,
|
|
"metric_values": self.metric_values,
|
|
"current_patient": self.current_patient
|
|
}
|
|
return data
|
|
|
|
def load(self, data):
|
|
"""Loads the needed information."""
|
|
self.last_epoch = data["current_epoch_index"]
|
|
self.hyperparam_value = data["hyperparam_value"]
|
|
self.metric_values = data["metric_values"]
|
|
self.current_patient = data["current_patient"]
|
|
|
|
|
|
def dynamic_import_scheduler(module):
|
|
"""Import Scheduler class dynamically.
|
|
|
|
Args:
|
|
module (str): module_name:class_name or alias in `SCHEDULER_DICT`
|
|
|
|
Returns:
|
|
type: Scheduler class
|
|
|
|
"""
|
|
module_class = dynamic_import(module, SCHEDULER_DICT)
|
|
assert issubclass(module_class,
|
|
LRScheduler), f"{module} does not implement LRScheduler"
|
|
return module_class
|
|
|
|
|
|
class LRSchedulerFactory():
|
|
@classmethod
|
|
def from_args(cls, name: str, args: Dict[Text, Any]):
|
|
module_class = dynamic_import_scheduler(name.lower())
|
|
return instance_class(module_class, args)
|