You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
865 lines
39 KiB
865 lines
39 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
# Copyright 2019 Mobvoi Inc. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# Modified from wenet(https://github.com/wenet-e2e/wenet)
|
|
"""Encoder definition."""
|
|
from typing import List
|
|
from typing import Optional
|
|
from typing import Tuple
|
|
from typing import Union
|
|
|
|
import paddle
|
|
from paddle import nn
|
|
from typeguard import check_argument_types
|
|
|
|
from paddlespeech.s2t.modules.activation import get_activation
|
|
from paddlespeech.s2t.modules.align import LayerNorm
|
|
from paddlespeech.s2t.modules.align import Linear
|
|
from paddlespeech.s2t.modules.attention import MultiHeadedAttention
|
|
from paddlespeech.s2t.modules.attention import RelPositionMultiHeadedAttention
|
|
from paddlespeech.s2t.modules.conformer_convolution import ConvolutionModule
|
|
from paddlespeech.s2t.modules.embedding import NoPositionalEncoding
|
|
from paddlespeech.s2t.modules.embedding import PositionalEncoding
|
|
from paddlespeech.s2t.modules.embedding import RelPositionalEncoding
|
|
from paddlespeech.s2t.modules.encoder_layer import ConformerEncoderLayer
|
|
from paddlespeech.s2t.modules.encoder_layer import SqueezeformerEncoderLayer
|
|
from paddlespeech.s2t.modules.encoder_layer import TransformerEncoderLayer
|
|
from paddlespeech.s2t.modules.mask import add_optional_chunk_mask
|
|
from paddlespeech.s2t.modules.mask import make_non_pad_mask
|
|
from paddlespeech.s2t.modules.positionwise_feed_forward import PositionwiseFeedForward
|
|
from paddlespeech.s2t.modules.subsampling import Conv2dSubsampling4
|
|
from paddlespeech.s2t.modules.subsampling import Conv2dSubsampling6
|
|
from paddlespeech.s2t.modules.subsampling import Conv2dSubsampling8
|
|
from paddlespeech.s2t.modules.subsampling import DepthwiseConv2DSubsampling4
|
|
from paddlespeech.s2t.modules.subsampling import LinearNoSubsampling
|
|
from paddlespeech.s2t.modules.time_reduction import TimeReductionLayer1D
|
|
from paddlespeech.s2t.modules.time_reduction import TimeReductionLayer2D
|
|
from paddlespeech.s2t.modules.time_reduction import TimeReductionLayerStream
|
|
from paddlespeech.s2t.utils.log import Log
|
|
|
|
logger = Log(__name__).getlog()
|
|
|
|
__all__ = [
|
|
"BaseEncoder", 'TransformerEncoder', "ConformerEncoder",
|
|
"SqueezeformerEncoder"
|
|
]
|
|
|
|
|
|
class BaseEncoder(nn.Layer):
|
|
def __init__(self,
|
|
input_size: int,
|
|
output_size: int=256,
|
|
attention_heads: int=4,
|
|
linear_units: int=2048,
|
|
num_blocks: int=6,
|
|
dropout_rate: float=0.1,
|
|
positional_dropout_rate: float=0.1,
|
|
attention_dropout_rate: float=0.0,
|
|
input_layer: str="conv2d",
|
|
pos_enc_layer_type: str="abs_pos",
|
|
normalize_before: bool=True,
|
|
concat_after: bool=False,
|
|
static_chunk_size: int=0,
|
|
use_dynamic_chunk: bool=False,
|
|
global_cmvn: paddle.nn.Layer=None,
|
|
use_dynamic_left_chunk: bool=False,
|
|
max_len: int=5000):
|
|
"""
|
|
Args:
|
|
input_size (int): input dim, d_feature
|
|
output_size (int): dimension of attention, d_model
|
|
attention_heads (int): the number of heads of multi head attention
|
|
linear_units (int): the hidden units number of position-wise feed
|
|
forward
|
|
num_blocks (int): the number of encoder blocks
|
|
dropout_rate (float): dropout rate
|
|
attention_dropout_rate (float): dropout rate in attention
|
|
positional_dropout_rate (float): dropout rate after adding
|
|
positional encoding
|
|
input_layer (str): input layer type.
|
|
optional [linear, conv2d, conv2d6, conv2d8]
|
|
pos_enc_layer_type (str): Encoder positional encoding layer type.
|
|
opitonal [abs_pos, scaled_abs_pos, rel_pos, no_pos]
|
|
normalize_before (bool):
|
|
True: use layer_norm before each sub-block of a layer.
|
|
False: use layer_norm after each sub-block of a layer.
|
|
concat_after (bool): whether to concat attention layer's input
|
|
and output.
|
|
True: x -> x + linear(concat(x, att(x)))
|
|
False: x -> x + att(x)
|
|
static_chunk_size (int): chunk size for static chunk training and
|
|
decoding
|
|
use_dynamic_chunk (bool): whether use dynamic chunk size for
|
|
training or not, You can only use fixed chunk(chunk_size > 0)
|
|
or dyanmic chunk size(use_dynamic_chunk = True)
|
|
global_cmvn (Optional[paddle.nn.Layer]): Optional GlobalCMVN layer
|
|
use_dynamic_left_chunk (bool): whether use dynamic left chunk in
|
|
dynamic chunk training
|
|
"""
|
|
assert check_argument_types()
|
|
super().__init__()
|
|
self._output_size = output_size
|
|
|
|
if pos_enc_layer_type == "abs_pos":
|
|
pos_enc_class = PositionalEncoding
|
|
elif pos_enc_layer_type == "rel_pos":
|
|
pos_enc_class = RelPositionalEncoding
|
|
elif pos_enc_layer_type == "no_pos":
|
|
pos_enc_class = NoPositionalEncoding
|
|
else:
|
|
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type)
|
|
|
|
if input_layer == "linear":
|
|
subsampling_class = LinearNoSubsampling
|
|
elif input_layer == "conv2d":
|
|
subsampling_class = Conv2dSubsampling4
|
|
elif input_layer == "conv2d6":
|
|
subsampling_class = Conv2dSubsampling6
|
|
elif input_layer == "conv2d8":
|
|
subsampling_class = Conv2dSubsampling8
|
|
else:
|
|
raise ValueError("unknown input_layer: " + input_layer)
|
|
|
|
self.global_cmvn = global_cmvn
|
|
self.embed = subsampling_class(
|
|
idim=input_size,
|
|
odim=output_size,
|
|
dropout_rate=dropout_rate,
|
|
pos_enc_class=pos_enc_class(
|
|
d_model=output_size,
|
|
dropout_rate=positional_dropout_rate,
|
|
max_len=max_len), )
|
|
|
|
self.normalize_before = normalize_before
|
|
self.after_norm = LayerNorm(output_size, epsilon=1e-12)
|
|
self.static_chunk_size = static_chunk_size
|
|
self.use_dynamic_chunk = use_dynamic_chunk
|
|
self.use_dynamic_left_chunk = use_dynamic_left_chunk
|
|
|
|
def output_size(self) -> int:
|
|
return self._output_size
|
|
|
|
def forward(
|
|
self,
|
|
xs: paddle.Tensor,
|
|
xs_lens: paddle.Tensor,
|
|
decoding_chunk_size: int=0,
|
|
num_decoding_left_chunks: int=-1,
|
|
) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
|
"""Embed positions in tensor.
|
|
Args:
|
|
xs: padded input tensor (B, L, D)
|
|
xs_lens: input length (B)
|
|
decoding_chunk_size: decoding chunk size for dynamic chunk
|
|
0: default for training, use random dynamic chunk.
|
|
<0: for decoding, use full chunk.
|
|
>0: for decoding, use fixed chunk size as set.
|
|
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
|
the chunk size is decoding_chunk_size.
|
|
>=0: use num_decoding_left_chunks
|
|
<0: use all left chunks
|
|
Returns:
|
|
encoder output tensor, lens and mask
|
|
"""
|
|
masks = make_non_pad_mask(xs_lens).unsqueeze(1) # (B, 1, L)
|
|
|
|
if self.global_cmvn is not None:
|
|
xs = self.global_cmvn(xs)
|
|
xs, pos_emb, masks = self.embed(xs, masks, offset=0)
|
|
mask_pad = ~masks
|
|
chunk_masks = add_optional_chunk_mask(
|
|
xs, masks, self.use_dynamic_chunk, self.use_dynamic_left_chunk,
|
|
decoding_chunk_size, self.static_chunk_size,
|
|
num_decoding_left_chunks)
|
|
for layer in self.encoders:
|
|
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
|
if self.normalize_before:
|
|
xs = self.after_norm(xs)
|
|
# Here we assume the mask is not changed in encoder layers, so just
|
|
# return the masks before encoder layers, and the masks will be used
|
|
# for cross attention with decoder later
|
|
return xs, masks
|
|
|
|
def forward_chunk(
|
|
self,
|
|
xs: paddle.Tensor,
|
|
offset: int,
|
|
required_cache_size: int,
|
|
att_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]),
|
|
cnn_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]),
|
|
att_mask: paddle.Tensor=paddle.ones([0, 0, 0], dtype=paddle.bool)
|
|
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
|
|
""" Forward just one chunk
|
|
Args:
|
|
xs (paddle.Tensor): chunk audio feat input, [B=1, T, D], where
|
|
`T==(chunk_size-1)*subsampling_rate + subsample.right_context + 1`
|
|
offset (int): current offset in encoder output time stamp
|
|
required_cache_size (int): cache size required for next chunk
|
|
compuation
|
|
>=0: actual cache size
|
|
<0: means all history cache is required
|
|
att_cache(paddle.Tensor): cache tensor for key & val in
|
|
transformer/conformer attention. Shape is
|
|
(elayers, head, cache_t1, d_k * 2), where`head * d_k == hidden-dim`
|
|
and `cache_t1 == chunk_size * num_decoding_left_chunks`.
|
|
cnn_cache (paddle.Tensor): cache tensor for cnn_module in conformer,
|
|
(elayers, B=1, hidden-dim, cache_t2), where `cache_t2 == cnn.lorder - 1`
|
|
Returns:
|
|
paddle.Tensor: output of current input xs, (B=1, chunk_size, hidden-dim)
|
|
paddle.Tensor: new attention cache required for next chunk, dyanmic shape
|
|
(elayers, head, T, d_k*2) depending on required_cache_size
|
|
paddle.Tensor: new conformer cnn cache required for next chunk, with
|
|
same shape as the original cnn_cache
|
|
"""
|
|
assert xs.shape[0] == 1 # batch size must be one
|
|
# tmp_masks is just for interface compatibility, [B=1, C=1, T]
|
|
tmp_masks = paddle.ones([1, 1, xs.shape[1]], dtype=paddle.bool)
|
|
|
|
if self.global_cmvn is not None:
|
|
xs = self.global_cmvn(xs)
|
|
|
|
# before embed, xs=(B, T, D1), pos_emb=(B=1, T, D)
|
|
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset=offset)
|
|
# after embed, xs=(B=1, chunk_size, hidden-dim)
|
|
|
|
elayers, _, cache_t1, _ = att_cache.shape
|
|
chunk_size = xs.shape[1]
|
|
attention_key_size = cache_t1 + chunk_size
|
|
|
|
# only used when using `RelPositionMultiHeadedAttention`
|
|
pos_emb = self.embed.position_encoding(
|
|
offset=offset - cache_t1, size=attention_key_size)
|
|
|
|
if required_cache_size < 0:
|
|
next_cache_start = 0
|
|
elif required_cache_size == 0:
|
|
next_cache_start = attention_key_size
|
|
else:
|
|
next_cache_start = max(attention_key_size - required_cache_size, 0)
|
|
|
|
r_att_cache = []
|
|
r_cnn_cache = []
|
|
for i, layer in enumerate(self.encoders):
|
|
# att_cache[i:i+1] = (1, head, cache_t1, d_k*2)
|
|
# cnn_cache[i:i+1] = (1, B=1, hidden-dim, cache_t2)
|
|
|
|
# WARNING: eliminate if-else cond op in graph
|
|
# tensor zeros([0,0,0,0]) support [i:i+1] slice, will return zeros([0,0,0,0]) tensor
|
|
# raw code as below:
|
|
# att_cache=att_cache[i:i+1] if elayers > 0 else att_cache,
|
|
# cnn_cache=cnn_cache[i:i+1] if cnn_cache.shape[0] > 0 else cnn_cache,
|
|
xs, _, new_att_cache, new_cnn_cache = layer(
|
|
xs,
|
|
att_mask,
|
|
pos_emb,
|
|
att_cache=att_cache[i:i + 1],
|
|
cnn_cache=cnn_cache[i:i + 1], )
|
|
# new_att_cache = (1, head, attention_key_size, d_k*2)
|
|
# new_cnn_cache = (B=1, hidden-dim, cache_t2)
|
|
r_att_cache.append(new_att_cache[:, :, next_cache_start:, :])
|
|
r_cnn_cache.append(new_cnn_cache) # add elayer dim
|
|
|
|
if self.normalize_before:
|
|
xs = self.after_norm(xs)
|
|
|
|
# r_att_cache (elayers, head, T, d_k*2)
|
|
# r_cnn_cache (elayers, B=1, hidden-dim, cache_t2)
|
|
r_att_cache = paddle.concat(r_att_cache, axis=0)
|
|
r_cnn_cache = paddle.stack(r_cnn_cache, axis=0)
|
|
return xs, r_att_cache, r_cnn_cache
|
|
|
|
def forward_chunk_by_chunk(
|
|
self,
|
|
xs: paddle.Tensor,
|
|
decoding_chunk_size: int,
|
|
num_decoding_left_chunks: int=-1,
|
|
) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
|
""" Forward input chunk by chunk with chunk_size like a streaming
|
|
fashion
|
|
Here we should pay special attention to computation cache in the
|
|
streaming style forward chunk by chunk. Three things should be taken
|
|
into account for computation in the current network:
|
|
1. transformer/conformer encoder layers output cache
|
|
2. convolution in conformer
|
|
3. convolution in subsampling
|
|
However, we don't implement subsampling cache for:
|
|
1. We can control subsampling module to output the right result by
|
|
overlapping input instead of cache left context, even though it
|
|
wastes some computation, but subsampling only takes a very
|
|
small fraction of computation in the whole model.
|
|
2. Typically, there are several covolution layers with subsampling
|
|
in subsampling module, it is tricky and complicated to do cache
|
|
with different convolution layers with different subsampling
|
|
rate.
|
|
3. Currently, nn.Sequential is used to stack all the convolution
|
|
layers in subsampling, we need to rewrite it to make it work
|
|
with cache, which is not prefered.
|
|
Args:
|
|
xs (paddle.Tensor): (1, max_len, dim)
|
|
chunk_size (int): decoding chunk size.
|
|
num_left_chunks (int): decoding with num left chunks.
|
|
"""
|
|
assert decoding_chunk_size > 0
|
|
# The model is trained by static or dynamic chunk
|
|
assert self.static_chunk_size > 0 or self.use_dynamic_chunk
|
|
|
|
# feature stride and window for `subsampling` module
|
|
subsampling = self.embed.subsampling_rate
|
|
context = self.embed.right_context + 1 # Add current frame
|
|
stride = subsampling * decoding_chunk_size
|
|
decoding_window = (decoding_chunk_size - 1) * subsampling + context
|
|
|
|
num_frames = xs.shape[1]
|
|
required_cache_size = decoding_chunk_size * num_decoding_left_chunks
|
|
|
|
att_cache: paddle.Tensor = paddle.zeros([0, 0, 0, 0])
|
|
cnn_cache: paddle.Tensor = paddle.zeros([0, 0, 0, 0])
|
|
|
|
outputs = []
|
|
offset = 0
|
|
# Feed forward overlap input step by step
|
|
for cur in range(0, num_frames - context + 1, stride):
|
|
end = min(cur + decoding_window, num_frames)
|
|
chunk_xs = xs[:, cur:end, :]
|
|
|
|
(y, att_cache, cnn_cache) = self.forward_chunk(
|
|
chunk_xs, offset, required_cache_size, att_cache, cnn_cache)
|
|
|
|
outputs.append(y)
|
|
offset += y.shape[1]
|
|
ys = paddle.cat(outputs, 1)
|
|
masks = paddle.ones([1, 1, ys.shape[1]], dtype=paddle.bool)
|
|
return ys, masks
|
|
|
|
|
|
class TransformerEncoder(BaseEncoder):
|
|
"""Transformer encoder module."""
|
|
|
|
def __init__(
|
|
self,
|
|
input_size: int,
|
|
output_size: int=256,
|
|
attention_heads: int=4,
|
|
linear_units: int=2048,
|
|
num_blocks: int=6,
|
|
dropout_rate: float=0.1,
|
|
positional_dropout_rate: float=0.1,
|
|
attention_dropout_rate: float=0.0,
|
|
input_layer: str="conv2d",
|
|
pos_enc_layer_type: str="abs_pos",
|
|
normalize_before: bool=True,
|
|
concat_after: bool=False,
|
|
static_chunk_size: int=0,
|
|
use_dynamic_chunk: bool=False,
|
|
global_cmvn: nn.Layer=None,
|
|
use_dynamic_left_chunk: bool=False, ):
|
|
""" Construct TransformerEncoder
|
|
See Encoder for the meaning of each parameter.
|
|
"""
|
|
assert check_argument_types()
|
|
super().__init__(input_size, output_size, attention_heads, linear_units,
|
|
num_blocks, dropout_rate, positional_dropout_rate,
|
|
attention_dropout_rate, input_layer,
|
|
pos_enc_layer_type, normalize_before, concat_after,
|
|
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
|
use_dynamic_left_chunk)
|
|
self.encoders = nn.LayerList([
|
|
TransformerEncoderLayer(
|
|
size=output_size,
|
|
self_attn=MultiHeadedAttention(attention_heads, output_size,
|
|
attention_dropout_rate),
|
|
feed_forward=PositionwiseFeedForward(output_size, linear_units,
|
|
dropout_rate),
|
|
dropout_rate=dropout_rate,
|
|
normalize_before=normalize_before,
|
|
concat_after=concat_after) for _ in range(num_blocks)
|
|
])
|
|
|
|
def forward_one_step(
|
|
self,
|
|
xs: paddle.Tensor,
|
|
masks: paddle.Tensor,
|
|
cache=None, ) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
|
"""Encode input frame.
|
|
|
|
Args:
|
|
xs (paddle.Tensor): (Prefix) Input tensor. (B, T, D)
|
|
masks (paddle.Tensor): Mask tensor. (B, T, T)
|
|
cache (List[paddle.Tensor]): List of cache tensors.
|
|
|
|
Returns:
|
|
paddle.Tensor: Output tensor.
|
|
paddle.Tensor: Mask tensor.
|
|
List[paddle.Tensor]: List of new cache tensors.
|
|
"""
|
|
if self.global_cmvn is not None:
|
|
xs = self.global_cmvn(xs)
|
|
|
|
xs, pos_emb, masks = self.embed(xs, masks, offset=0)
|
|
if cache is None:
|
|
cache = [None for _ in range(len(self.encoders))]
|
|
new_cache = []
|
|
for c, e in zip(cache, self.encoders):
|
|
xs, masks, _ = e(xs, masks, output_cache=c)
|
|
new_cache.append(xs)
|
|
if self.normalize_before:
|
|
xs = self.after_norm(xs)
|
|
return xs, masks, new_cache
|
|
|
|
|
|
class ConformerEncoder(BaseEncoder):
|
|
"""Conformer encoder module."""
|
|
|
|
def __init__(self,
|
|
input_size: int,
|
|
output_size: int=256,
|
|
attention_heads: int=4,
|
|
linear_units: int=2048,
|
|
num_blocks: int=6,
|
|
dropout_rate: float=0.1,
|
|
positional_dropout_rate: float=0.1,
|
|
attention_dropout_rate: float=0.0,
|
|
input_layer: str="conv2d",
|
|
pos_enc_layer_type: str="rel_pos",
|
|
normalize_before: bool=True,
|
|
concat_after: bool=False,
|
|
static_chunk_size: int=0,
|
|
use_dynamic_chunk: bool=False,
|
|
global_cmvn: nn.Layer=None,
|
|
use_dynamic_left_chunk: bool=False,
|
|
positionwise_conv_kernel_size: int=1,
|
|
macaron_style: bool=True,
|
|
selfattention_layer_type: str="rel_selfattn",
|
|
activation_type: str="swish",
|
|
use_cnn_module: bool=True,
|
|
cnn_module_kernel: int=15,
|
|
causal: bool=False,
|
|
cnn_module_norm: str="batch_norm",
|
|
max_len: int=5000):
|
|
"""Construct ConformerEncoder
|
|
Args:
|
|
input_size to use_dynamic_chunk, see in BaseEncoder
|
|
positionwise_conv_kernel_size (int): Kernel size of positionwise
|
|
conv1d layer.
|
|
macaron_style (bool): Whether to use macaron style for
|
|
positionwise layer.
|
|
selfattention_layer_type (str): Encoder attention layer type,
|
|
the parameter has no effect now, it's just for configure
|
|
compatibility.
|
|
activation_type (str): Encoder activation function type.
|
|
use_cnn_module (bool): Whether to use convolution module.
|
|
cnn_module_kernel (int): Kernel size of convolution module.
|
|
causal (bool): whether to use causal convolution or not.
|
|
cnn_module_norm (str): cnn conv norm type, Optional['batch_norm','layer_norm']
|
|
"""
|
|
assert check_argument_types()
|
|
|
|
super().__init__(input_size, output_size, attention_heads, linear_units,
|
|
num_blocks, dropout_rate, positional_dropout_rate,
|
|
attention_dropout_rate, input_layer,
|
|
pos_enc_layer_type, normalize_before, concat_after,
|
|
static_chunk_size, use_dynamic_chunk, global_cmvn,
|
|
use_dynamic_left_chunk, max_len)
|
|
activation = get_activation(activation_type)
|
|
|
|
# self-attention module definition
|
|
encoder_selfattn_layer = RelPositionMultiHeadedAttention
|
|
encoder_selfattn_layer_args = (attention_heads, output_size,
|
|
attention_dropout_rate)
|
|
# feed-forward module definition
|
|
positionwise_layer = PositionwiseFeedForward
|
|
positionwise_layer_args = (output_size, linear_units, dropout_rate,
|
|
activation)
|
|
# convolution module definition
|
|
convolution_layer = ConvolutionModule
|
|
convolution_layer_args = (output_size, cnn_module_kernel, activation,
|
|
cnn_module_norm, causal)
|
|
|
|
self.encoders = nn.LayerList([
|
|
ConformerEncoderLayer(
|
|
size=output_size,
|
|
self_attn=encoder_selfattn_layer(*encoder_selfattn_layer_args),
|
|
feed_forward=positionwise_layer(*positionwise_layer_args),
|
|
feed_forward_macaron=positionwise_layer(
|
|
*positionwise_layer_args) if macaron_style else None,
|
|
conv_module=convolution_layer(*convolution_layer_args)
|
|
if use_cnn_module else None,
|
|
dropout_rate=dropout_rate,
|
|
normalize_before=normalize_before,
|
|
concat_after=concat_after) for _ in range(num_blocks)
|
|
])
|
|
|
|
|
|
class SqueezeformerEncoder(nn.Layer):
|
|
def __init__(self,
|
|
input_size: int,
|
|
encoder_dim: int=256,
|
|
output_size: int=256,
|
|
attention_heads: int=4,
|
|
num_blocks: int=12,
|
|
reduce_idx: Optional[Union[int, List[int]]]=5,
|
|
recover_idx: Optional[Union[int, List[int]]]=11,
|
|
feed_forward_expansion_factor: int=4,
|
|
dw_stride: bool=False,
|
|
input_dropout_rate: float=0.1,
|
|
pos_enc_layer_type: str="rel_pos",
|
|
time_reduction_layer_type: str="conv1d",
|
|
feed_forward_dropout_rate: float=0.1,
|
|
attention_dropout_rate: float=0.1,
|
|
cnn_module_kernel: int=31,
|
|
cnn_norm_type: str="layer_norm",
|
|
dropout: float=0.1,
|
|
causal: bool=False,
|
|
adaptive_scale: bool=True,
|
|
activation_type: str="swish",
|
|
init_weights: bool=True,
|
|
global_cmvn: paddle.nn.Layer=None,
|
|
normalize_before: bool=False,
|
|
use_dynamic_chunk: bool=False,
|
|
concat_after: bool=False,
|
|
static_chunk_size: int=0,
|
|
use_dynamic_left_chunk: bool=False):
|
|
"""Construct SqueezeformerEncoder
|
|
|
|
Args:
|
|
input_size to use_dynamic_chunk, see in Transformer BaseEncoder.
|
|
encoder_dim (int): The hidden dimension of encoder layer.
|
|
output_size (int): The output dimension of final projection layer.
|
|
attention_heads (int): Num of attention head in attention module.
|
|
num_blocks (int): Num of encoder layers.
|
|
reduce_idx Optional[Union[int, List[int]]]:
|
|
reduce layer index, from 40ms to 80ms per frame.
|
|
recover_idx Optional[Union[int, List[int]]]:
|
|
recover layer index, from 80ms to 40ms per frame.
|
|
feed_forward_expansion_factor (int): Enlarge coefficient of FFN.
|
|
dw_stride (bool): Whether do depthwise convolution
|
|
on subsampling module.
|
|
input_dropout_rate (float): Dropout rate of input projection layer.
|
|
pos_enc_layer_type (str): Self attention type.
|
|
time_reduction_layer_type (str): Conv1d or Conv2d reduction layer.
|
|
cnn_module_kernel (int): Kernel size of CNN module.
|
|
activation_type (str): Encoder activation function type.
|
|
cnn_module_kernel (int): Kernel size of convolution module.
|
|
adaptive_scale (bool): Whether to use adaptive scale.
|
|
init_weights (bool): Whether to initialize weights.
|
|
causal (bool): whether to use causal convolution or not.
|
|
"""
|
|
assert check_argument_types()
|
|
super().__init__()
|
|
self.global_cmvn = global_cmvn
|
|
self.reduce_idx: Optional[Union[int, List[int]]] = [reduce_idx] \
|
|
if type(reduce_idx) == int else reduce_idx
|
|
self.recover_idx: Optional[Union[int, List[int]]] = [recover_idx] \
|
|
if type(recover_idx) == int else recover_idx
|
|
self.check_ascending_list()
|
|
if reduce_idx is None:
|
|
self.time_reduce = None
|
|
else:
|
|
if recover_idx is None:
|
|
self.time_reduce = 'normal' # no recovery at the end
|
|
else:
|
|
self.time_reduce = 'recover' # recovery at the end
|
|
assert len(self.reduce_idx) == len(self.recover_idx)
|
|
self.reduce_stride = 2
|
|
self._output_size = output_size
|
|
self.normalize_before = normalize_before
|
|
self.static_chunk_size = static_chunk_size
|
|
self.use_dynamic_chunk = use_dynamic_chunk
|
|
self.use_dynamic_left_chunk = use_dynamic_left_chunk
|
|
activation = get_activation(activation_type)
|
|
|
|
# self-attention module definition
|
|
if pos_enc_layer_type != "rel_pos":
|
|
encoder_selfattn_layer = MultiHeadedAttention
|
|
encoder_selfattn_layer_args = (attention_heads, output_size,
|
|
attention_dropout_rate)
|
|
else:
|
|
encoder_selfattn_layer = RelPositionMultiHeadedAttention
|
|
encoder_selfattn_layer_args = (attention_heads, encoder_dim,
|
|
attention_dropout_rate,
|
|
adaptive_scale, init_weights)
|
|
|
|
# feed-forward module definition
|
|
positionwise_layer = PositionwiseFeedForward
|
|
positionwise_layer_args = (
|
|
encoder_dim, encoder_dim * feed_forward_expansion_factor,
|
|
feed_forward_dropout_rate, activation, adaptive_scale, init_weights)
|
|
|
|
# convolution module definition
|
|
convolution_layer = ConvolutionModule
|
|
convolution_layer_args = (encoder_dim, cnn_module_kernel, activation,
|
|
cnn_norm_type, causal, True, adaptive_scale,
|
|
init_weights)
|
|
|
|
self.embed = DepthwiseConv2DSubsampling4(
|
|
1, encoder_dim,
|
|
RelPositionalEncoding(encoder_dim, dropout_rate=0.1), dw_stride,
|
|
input_size, input_dropout_rate, init_weights)
|
|
|
|
self.preln = LayerNorm(encoder_dim)
|
|
self.encoders = paddle.nn.LayerList([
|
|
SqueezeformerEncoderLayer(
|
|
encoder_dim,
|
|
encoder_selfattn_layer(*encoder_selfattn_layer_args),
|
|
positionwise_layer(*positionwise_layer_args),
|
|
convolution_layer(*convolution_layer_args),
|
|
positionwise_layer(*positionwise_layer_args), normalize_before,
|
|
dropout, concat_after) for _ in range(num_blocks)
|
|
])
|
|
if time_reduction_layer_type == 'conv1d':
|
|
time_reduction_layer = TimeReductionLayer1D
|
|
time_reduction_layer_args = {
|
|
'channel': encoder_dim,
|
|
'out_dim': encoder_dim,
|
|
}
|
|
elif time_reduction_layer_type == 'stream':
|
|
time_reduction_layer = TimeReductionLayerStream
|
|
time_reduction_layer_args = {
|
|
'channel': encoder_dim,
|
|
'out_dim': encoder_dim,
|
|
}
|
|
else:
|
|
time_reduction_layer = TimeReductionLayer2D
|
|
time_reduction_layer_args = {'encoder_dim': encoder_dim}
|
|
|
|
self.time_reduction_layer = time_reduction_layer(
|
|
**time_reduction_layer_args)
|
|
self.time_recover_layer = Linear(encoder_dim, encoder_dim)
|
|
self.final_proj = None
|
|
if output_size != encoder_dim:
|
|
self.final_proj = Linear(encoder_dim, output_size)
|
|
|
|
def output_size(self) -> int:
|
|
return self._output_size
|
|
|
|
def forward(
|
|
self,
|
|
xs: paddle.Tensor,
|
|
xs_lens: paddle.Tensor,
|
|
decoding_chunk_size: int=0,
|
|
num_decoding_left_chunks: int=-1,
|
|
) -> Tuple[paddle.Tensor, paddle.Tensor]:
|
|
"""Embed positions in tensor.
|
|
Args:
|
|
xs: padded input tensor (B, L, D)
|
|
xs_lens: input length (B)
|
|
decoding_chunk_size: decoding chunk size for dynamic chunk
|
|
0: default for training, use random dynamic chunk.
|
|
<0: for decoding, use full chunk.
|
|
>0: for decoding, use fixed chunk size as set.
|
|
num_decoding_left_chunks: number of left chunks, this is for decoding,
|
|
the chunk size is decoding_chunk_size.
|
|
>=0: use num_decoding_left_chunks
|
|
<0: use all left chunks
|
|
Returns:
|
|
encoder output tensor, lens and mask
|
|
"""
|
|
masks = make_non_pad_mask(xs_lens).unsqueeze(1) # (B, 1, L)
|
|
|
|
if self.global_cmvn is not None:
|
|
xs = self.global_cmvn(xs)
|
|
xs, pos_emb, masks = self.embed(xs, masks)
|
|
mask_pad = masks
|
|
chunk_masks = add_optional_chunk_mask(
|
|
xs, masks, self.use_dynamic_chunk, self.use_dynamic_left_chunk,
|
|
decoding_chunk_size, self.static_chunk_size,
|
|
num_decoding_left_chunks)
|
|
xs_lens = chunk_masks.squeeze(1).sum(1)
|
|
xs = self.preln(xs)
|
|
recover_activations: \
|
|
List[Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]] = []
|
|
index = 0
|
|
for i, layer in enumerate(self.encoders):
|
|
if self.reduce_idx is not None:
|
|
if self.time_reduce is not None and i in self.reduce_idx:
|
|
recover_activations.append(
|
|
(xs, chunk_masks, pos_emb, mask_pad))
|
|
xs, xs_lens, chunk_masks, mask_pad = self.time_reduction_layer(
|
|
xs, xs_lens, chunk_masks, mask_pad)
|
|
pos_emb = pos_emb[:, ::2, :]
|
|
index += 1
|
|
|
|
if self.recover_idx is not None:
|
|
if self.time_reduce == 'recover' and i in self.recover_idx:
|
|
index -= 1
|
|
recover_tensor, recover_chunk_masks, recover_pos_emb, recover_mask_pad = recover_activations[
|
|
index]
|
|
# recover output length for ctc decode
|
|
xs = paddle.repeat_interleave(xs, repeats=2, axis=1)
|
|
xs = self.time_recover_layer(xs)
|
|
recoverd_t = recover_tensor.shape[1]
|
|
xs = recover_tensor + xs[:, :recoverd_t, :]
|
|
chunk_masks = recover_chunk_masks
|
|
pos_emb = recover_pos_emb
|
|
mask_pad = recover_mask_pad
|
|
|
|
xs, chunk_masks, _, _ = layer(xs, chunk_masks, pos_emb, mask_pad)
|
|
|
|
if self.final_proj is not None:
|
|
xs = self.final_proj(xs)
|
|
return xs, masks
|
|
|
|
def check_ascending_list(self):
|
|
if self.reduce_idx is not None:
|
|
assert self.reduce_idx == sorted(self.reduce_idx), \
|
|
"reduce_idx should be int or ascending list"
|
|
if self.recover_idx is not None:
|
|
assert self.recover_idx == sorted(self.recover_idx), \
|
|
"recover_idx should be int or ascending list"
|
|
|
|
def calculate_downsampling_factor(self, i: int) -> int:
|
|
if self.reduce_idx is None:
|
|
return 1
|
|
else:
|
|
reduce_exp, recover_exp = 0, 0
|
|
for exp, rd_idx in enumerate(self.reduce_idx):
|
|
if i >= rd_idx:
|
|
reduce_exp = exp + 1
|
|
if self.recover_idx is not None:
|
|
for exp, rc_idx in enumerate(self.recover_idx):
|
|
if i >= rc_idx:
|
|
recover_exp = exp + 1
|
|
return int(2**(reduce_exp - recover_exp))
|
|
|
|
def forward_chunk(
|
|
self,
|
|
xs: paddle.Tensor,
|
|
offset: int,
|
|
required_cache_size: int,
|
|
att_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]),
|
|
cnn_cache: paddle.Tensor=paddle.zeros([0, 0, 0, 0]),
|
|
att_mask: paddle.Tensor=paddle.ones([0, 0, 0], dtype=paddle.bool),
|
|
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
|
|
""" Forward just one chunk
|
|
|
|
Args:
|
|
xs (paddle.Tensor): chunk input, with shape (b=1, time, mel-dim),
|
|
where `time == (chunk_size - 1) * subsample_rate + \
|
|
subsample.right_context + 1`
|
|
offset (int): current offset in encoder output time stamp
|
|
required_cache_size (int): cache size required for next chunk
|
|
compuation
|
|
>=0: actual cache size
|
|
<0: means all history cache is required
|
|
att_cache (paddle.Tensor): cache tensor for KEY & VALUE in
|
|
transformer/conformer attention, with shape
|
|
(elayers, head, cache_t1, d_k * 2), where
|
|
`head * d_k == hidden-dim` and
|
|
`cache_t1 == chunk_size * num_decoding_left_chunks`.
|
|
cnn_cache (paddle.Tensor): cache tensor for cnn_module in conformer,
|
|
(elayers, b=1, hidden-dim, cache_t2), where
|
|
`cache_t2 == cnn.lorder - 1`
|
|
|
|
Returns:
|
|
paddle.Tensor: output of current input xs,
|
|
with shape (b=1, chunk_size, hidden-dim).
|
|
paddle.Tensor: new attention cache required for next chunk, with
|
|
dynamic shape (elayers, head, ?, d_k * 2)
|
|
depending on required_cache_size.
|
|
paddle.Tensor: new conformer cnn cache required for next chunk, with
|
|
same shape as the original cnn_cache.
|
|
"""
|
|
assert xs.shape[0] == 1 # batch size must be one
|
|
|
|
if self.global_cmvn is not None:
|
|
xs = self.global_cmvn(xs)
|
|
|
|
# tmp_masks is just for interface compatibility, [B=1, C=1, T]
|
|
tmp_masks = paddle.ones([1, 1, xs.shape[1]], dtype=paddle.bool)
|
|
# before embed, xs=(B, T, D1), pos_emb=(B=1, T, D)
|
|
xs, pos_emb, _ = self.embed(xs, tmp_masks, offset=offset)
|
|
|
|
# NOTE(xcsong): After embed, shape(xs) is (b=1, chunk_size, hidden-dim)
|
|
elayers, cache_t1 = att_cache.shape[0], att_cache.shape[2]
|
|
chunk_size = xs.shape[1]
|
|
attention_key_size = cache_t1 + chunk_size
|
|
pos_emb = self.embed.position_encoding(
|
|
offset=offset - cache_t1, size=attention_key_size)
|
|
if required_cache_size < 0:
|
|
next_cache_start = 0
|
|
elif required_cache_size == 0:
|
|
next_cache_start = attention_key_size
|
|
else:
|
|
next_cache_start = max(attention_key_size - required_cache_size, 0)
|
|
|
|
r_att_cache = []
|
|
r_cnn_cache = []
|
|
|
|
mask_pad = paddle.ones([1, xs.shape[1]], dtype=paddle.bool)
|
|
mask_pad = mask_pad.unsqueeze(1)
|
|
max_att_len: int = 0
|
|
recover_activations: \
|
|
List[Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]] = []
|
|
index = 0
|
|
xs_lens = paddle.to_tensor([xs.shape[1]], dtype=paddle.int32)
|
|
xs = self.preln(xs)
|
|
for i, layer in enumerate(self.encoders):
|
|
# NOTE(xcsong): Before layer.forward
|
|
# shape(att_cache[i:i + 1]) is (1, head, cache_t1, d_k * 2),
|
|
# shape(cnn_cache[i]) is (b=1, hidden-dim, cache_t2)
|
|
if self.reduce_idx is not None:
|
|
if self.time_reduce is not None and i in self.reduce_idx:
|
|
recover_activations.append(
|
|
(xs, att_mask, pos_emb, mask_pad))
|
|
xs, xs_lens, att_mask, mask_pad = self.time_reduction_layer(
|
|
xs, xs_lens, att_mask, mask_pad)
|
|
pos_emb = pos_emb[:, ::2, :]
|
|
index += 1
|
|
|
|
if self.recover_idx is not None:
|
|
if self.time_reduce == 'recover' and i in self.recover_idx:
|
|
index -= 1
|
|
recover_tensor, recover_att_mask, recover_pos_emb, recover_mask_pad = recover_activations[
|
|
index]
|
|
# recover output length for ctc decode
|
|
xs = paddle.repeat_interleave(xs, repeats=2, axis=1)
|
|
xs = self.time_recover_layer(xs)
|
|
recoverd_t = recover_tensor.shape[1]
|
|
xs = recover_tensor + xs[:, :recoverd_t, :]
|
|
att_mask = recover_att_mask
|
|
pos_emb = recover_pos_emb
|
|
mask_pad = recover_mask_pad
|
|
|
|
factor = self.calculate_downsampling_factor(i)
|
|
att_cache1 = att_cache[
|
|
i:i + 1][:, :, ::factor, :][:, :, :pos_emb.shape[1] - xs.shape[
|
|
1], :]
|
|
cnn_cache1 = cnn_cache[i] if cnn_cache.shape[0] > 0 else cnn_cache
|
|
xs, _, new_att_cache, new_cnn_cache = layer(
|
|
xs,
|
|
att_mask,
|
|
pos_emb,
|
|
att_cache=att_cache1,
|
|
cnn_cache=cnn_cache1)
|
|
# NOTE(xcsong): After layer.forward
|
|
# shape(new_att_cache) is (1, head, attention_key_size, d_k * 2),
|
|
# shape(new_cnn_cache) is (b=1, hidden-dim, cache_t2)
|
|
cached_att = new_att_cache[:, :, next_cache_start // factor:, :]
|
|
cached_cnn = new_cnn_cache.unsqueeze(0)
|
|
cached_att = cached_att.repeat_interleave(repeats=factor, axis=2)
|
|
if i == 0:
|
|
# record length for the first block as max length
|
|
max_att_len = cached_att.shape[2]
|
|
r_att_cache.append(cached_att[:, :, :max_att_len, :])
|
|
r_cnn_cache.append(cached_cnn)
|
|
# NOTE(xcsong): shape(r_att_cache) is (elayers, head, ?, d_k * 2),
|
|
# ? may be larger than cache_t1, it depends on required_cache_size
|
|
r_att_cache = paddle.concat(r_att_cache, axis=0)
|
|
# NOTE(xcsong): shape(r_cnn_cache) is (e, b=1, hidden-dim, cache_t2)
|
|
r_cnn_cache = paddle.concat(r_cnn_cache, axis=0)
|
|
|
|
if self.final_proj is not None:
|
|
xs = self.final_proj(xs)
|
|
return xs, r_att_cache, r_cnn_cache
|