You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/dataset/s2t/compute_mean_std.py

107 lines
3.9 KiB

# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Compute mean and std for feature normalizer, and save to file."""
import argparse
import functools
from paddlespeech.s2t.frontend.augmentor.augmentation import AugmentationPipeline
from paddlespeech.s2t.frontend.featurizer.audio_featurizer import AudioFeaturizer
from paddlespeech.s2t.frontend.normalizer import FeatureNormalizer
from paddlespeech.utils.argparse import add_arguments
from paddlespeech.utils.argparse import print_arguments
def compute_cmvn(manifest_path="data/librispeech/manifest.train",
output_path="data/librispeech/mean_std.npz",
num_samples=2000,
num_workers=0,
spectrum_type="linear",
feat_dim=13,
delta_delta=False,
stride_ms=10,
window_ms=20,
sample_rate=16000,
use_dB_normalization=True,
target_dB=-20):
augmentation_pipeline = AugmentationPipeline('{}')
audio_featurizer = AudioFeaturizer(
spectrum_type=spectrum_type,
feat_dim=feat_dim,
delta_delta=delta_delta,
stride_ms=float(stride_ms),
window_ms=float(window_ms),
n_fft=None,
max_freq=None,
target_sample_rate=sample_rate,
use_dB_normalization=use_dB_normalization,
target_dB=target_dB,
dither=0.0)
def augment_and_featurize(audio_segment):
augmentation_pipeline.transform_audio(audio_segment)
return audio_featurizer.featurize(audio_segment)
normalizer = FeatureNormalizer(
mean_std_filepath=None,
manifest_path=manifest_path,
featurize_func=augment_and_featurize,
num_samples=num_samples,
num_workers=num_workers)
normalizer.write_to_file(output_path)
def define_argparse():
parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('manifest_path', str,
'data/librispeech/manifest.train',
"Filepath of manifest to compute normalizer's mean and stddev.")
add_arg('output_path', str,
'data/librispeech/mean_std.npz',
"Filepath of write mean and stddev to (.npz).")
add_arg('num_samples', int, 2000, "# of samples to for statistics.")
add_arg('num_workers',
default=0,
type=int,
help='num of subprocess workers for processing')
add_arg('spectrum_type', str,
'linear',
"Audio feature type. Options: linear, mfcc, fbank.",
choices=['linear', 'mfcc', 'fbank'])
add_arg('feat_dim', int, 13, "Audio feature dim.")
add_arg('delta_delta', bool, False, "Audio feature with delta delta.")
add_arg('stride_ms', int, 10, "stride length in ms.")
add_arg('window_ms', int, 20, "stride length in ms.")
add_arg('sample_rate', int, 16000, "target sample rate.")
add_arg('use_dB_normalization', bool, True, "do dB normalization.")
add_arg('target_dB', int, -20, "target dB.")
# yapf: disable
args = parser.parse_args()
return args
def main():
args = define_argparse()
print_arguments(args, globals())
compute_cmvn(**vars(args))
if __name__ == '__main__':
main()