You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
126 lines
3.8 KiB
126 lines
3.8 KiB
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import glob
|
|
import json
|
|
import os
|
|
|
|
import numpy as np
|
|
import paddle
|
|
|
|
|
|
def define_argparse():
|
|
parser = argparse.ArgumentParser(description='average model')
|
|
parser.add_argument('--dst_model', required=True, help='averaged model')
|
|
parser.add_argument(
|
|
'--ckpt_dir', required=True, help='ckpt model dir for average')
|
|
parser.add_argument(
|
|
'--val_best', action="store_true", help='averaged model')
|
|
parser.add_argument(
|
|
'--num', default=5, type=int, help='nums for averaged model')
|
|
parser.add_argument(
|
|
'--min_epoch',
|
|
default=0,
|
|
type=int,
|
|
help='min epoch used for averaging model')
|
|
parser.add_argument(
|
|
'--max_epoch',
|
|
default=65536, # Big enough
|
|
type=int,
|
|
help='max epoch used for averaging model')
|
|
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def average_checkpoints(dst_model="",
|
|
ckpt_dir="",
|
|
val_best=True,
|
|
num=5,
|
|
min_epoch=0,
|
|
max_epoch=65536):
|
|
paddle.set_device('cpu')
|
|
|
|
val_scores = []
|
|
jsons = glob.glob(f'{ckpt_dir}/[!train]*.json')
|
|
jsons = sorted(jsons, key=os.path.getmtime, reverse=True)
|
|
for y in jsons:
|
|
with open(y, 'r') as f:
|
|
dic_json = json.load(f)
|
|
loss = dic_json['val_loss']
|
|
epoch = dic_json['epoch']
|
|
if epoch >= min_epoch and epoch <= max_epoch:
|
|
val_scores.append((epoch, loss))
|
|
assert val_scores, f"Not find any valid checkpoints: {val_scores}"
|
|
val_scores = np.array(val_scores)
|
|
|
|
if val_best:
|
|
sort_idx = np.argsort(val_scores[:, 1])
|
|
sorted_val_scores = val_scores[sort_idx]
|
|
else:
|
|
sorted_val_scores = val_scores
|
|
|
|
beat_val_scores = sorted_val_scores[:num, 1]
|
|
selected_epochs = sorted_val_scores[:num, 0].astype(np.int64)
|
|
avg_val_score = np.mean(beat_val_scores)
|
|
print("selected val scores = " + str(beat_val_scores))
|
|
print("selected epochs = " + str(selected_epochs))
|
|
print("averaged val score = " + str(avg_val_score))
|
|
|
|
path_list = [
|
|
ckpt_dir + '/{}.pdparams'.format(int(epoch))
|
|
for epoch in sorted_val_scores[:num, 0]
|
|
]
|
|
print(path_list)
|
|
|
|
avg = None
|
|
num = args.num
|
|
assert num == len(path_list)
|
|
for path in path_list:
|
|
print(f'Processing {path}')
|
|
states = paddle.load(path)
|
|
if avg is None:
|
|
avg = states
|
|
else:
|
|
for k in avg.keys():
|
|
avg[k] += states[k]
|
|
# average
|
|
for k in avg.keys():
|
|
if avg[k] is not None:
|
|
avg[k] /= num
|
|
|
|
paddle.save(avg, args.dst_model)
|
|
print(f'Saving to {args.dst_model}')
|
|
|
|
meta_path = os.path.splitext(args.dst_model)[0] + '.avg.json'
|
|
with open(meta_path, 'w') as f:
|
|
data = json.dumps({
|
|
"mode": 'val_best' if args.val_best else 'latest',
|
|
"avg_ckpt": args.dst_model,
|
|
"val_loss_mean": avg_val_score,
|
|
"ckpts": path_list,
|
|
"epochs": selected_epochs.tolist(),
|
|
"val_losses": beat_val_scores.tolist(),
|
|
})
|
|
f.write(data + "\n")
|
|
|
|
|
|
def main():
|
|
args = define_argparse()
|
|
average_checkpoints(args)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|