You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/modules/transformer/decoder.py

283 lines
11 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
# 暂时删除了 dyminic conv
"""Decoder definition."""
import logging
from typing import Any
from typing import List
from typing import Tuple
import paddle
import paddle.nn.functional as F
from paddle import nn
from paddlespeech.t2s.modules.layer_norm import LayerNorm
from paddlespeech.t2s.modules.transformer.attention import MultiHeadedAttention
from paddlespeech.t2s.modules.transformer.decoder_layer import DecoderLayer
from paddlespeech.t2s.modules.transformer.embedding import PositionalEncoding
from paddlespeech.t2s.modules.transformer.lightconv import LightweightConvolution
from paddlespeech.t2s.modules.transformer.mask import subsequent_mask
from paddlespeech.t2s.modules.transformer.positionwise_feed_forward import PositionwiseFeedForward
from paddlespeech.t2s.modules.transformer.repeat import repeat
class Decoder(nn.Layer):
"""Transfomer decoder module.
Args:
odim (int):
Output diminsion.
self_attention_layer_type (str):
Self-attention layer type.
attention_dim (int):
Dimention of attention.
attention_heads (int):
The number of heads of multi head attention.
conv_wshare (int):
The number of kernel of convolution. Only used in
self_attention_layer_type == "lightconv*" or "dynamiconv*".
conv_kernel_length (Union[int, str]):
Kernel size str of convolution
(e.g. 71_71_71_71_71_71). Only used in self_attention_layer_type == "lightconv*" or "dynamiconv*".
conv_usebias (bool):
Whether to use bias in convolution. Only used in
self_attention_layer_type == "lightconv*" or "dynamiconv*".
linear_units(int):
The number of units of position-wise feed forward.
num_blocks (int):
The number of decoder blocks.
dropout_rate (float):
Dropout rate.
positional_dropout_rate (float):
Dropout rate after adding positional encoding.
self_attention_dropout_rate (float):
Dropout rate in self-attention.
src_attention_dropout_rate (float):
Dropout rate in source-attention.
input_layer (Union[str, nn.Layer]):
Input layer type.
use_output_layer (bool):
Whether to use output layer.
pos_enc_class (nn.Layer):
Positional encoding module class.
`PositionalEncoding `or `ScaledPositionalEncoding`
normalize_before (bool):
Whether to use layer_norm before the first block.
concat_after (bool):
Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
"""
def __init__(
self,
odim,
selfattention_layer_type="selfattn",
attention_dim=256,
attention_heads=4,
conv_wshare=4,
conv_kernel_length=11,
conv_usebias=False,
linear_units=2048,
num_blocks=6,
dropout_rate=0.1,
positional_dropout_rate=0.1,
self_attention_dropout_rate=0.0,
src_attention_dropout_rate=0.0,
input_layer="embed",
use_output_layer=True,
pos_enc_class=PositionalEncoding,
normalize_before=True,
concat_after=False, ):
"""Construct an Decoder object."""
nn.Layer.__init__(self)
if input_layer == "embed":
self.embed = nn.Sequential(
nn.Embedding(odim, attention_dim),
pos_enc_class(attention_dim, positional_dropout_rate), )
elif input_layer == "linear":
self.embed = nn.Sequential(
nn.Linear(odim, attention_dim),
nn.LayerNorm(attention_dim),
nn.Dropout(dropout_rate),
nn.ReLU(),
pos_enc_class(attention_dim, positional_dropout_rate), )
elif isinstance(input_layer, nn.Layer):
self.embed = nn.Sequential(
input_layer,
pos_enc_class(attention_dim, positional_dropout_rate))
else:
raise NotImplementedError("only `embed` or nn.Layer is supported.")
self.normalize_before = normalize_before
# self-attention module definition
if selfattention_layer_type == "selfattn":
logging.info("decoder self-attention layer type = self-attention")
decoder_selfattn_layer = MultiHeadedAttention
decoder_selfattn_layer_args = [
(attention_heads, attention_dim, self_attention_dropout_rate, )
] * num_blocks
elif selfattention_layer_type == "lightconv":
logging.info(
"decoder self-attention layer type = lightweight convolution")
decoder_selfattn_layer = LightweightConvolution
decoder_selfattn_layer_args = [(
conv_wshare, attention_dim, self_attention_dropout_rate,
int(conv_kernel_length.split("_")[lnum]), True, conv_usebias, )
for lnum in range(num_blocks)]
self.decoders = repeat(
num_blocks,
lambda lnum: DecoderLayer(
attention_dim,
decoder_selfattn_layer(*decoder_selfattn_layer_args[lnum]),
MultiHeadedAttention(attention_heads, attention_dim, src_attention_dropout_rate),
PositionwiseFeedForward(attention_dim, linear_units, dropout_rate),
dropout_rate,
normalize_before,
concat_after, ), )
self.selfattention_layer_type = selfattention_layer_type
if self.normalize_before:
self.after_norm = LayerNorm(attention_dim)
if use_output_layer:
self.output_layer = nn.Linear(attention_dim, odim)
else:
self.output_layer = None
def forward(self, tgt, tgt_mask, memory, memory_mask):
"""Forward decoder.
Args:
tgt(Tensor):
Input token ids, int64 (#batch, maxlen_out) if input_layer == "embed".
In the other case, input tensor (#batch, maxlen_out, odim).
tgt_mask(Tensor):
Input token mask (#batch, maxlen_out).
memory(Tensor):
Encoded memory, float32 (#batch, maxlen_in, feat).
memory_mask(Tensor):
Encoded memory mask (#batch, maxlen_in).
Returns:
Tensor:
Decoded token score before softmax (#batch, maxlen_out, odim) if use_output_layer is True.
In the other case,final block outputs (#batch, maxlen_out, attention_dim).
Tensor:
Score mask before softmax (#batch, maxlen_out).
"""
x = self.embed(tgt)
x, tgt_mask, memory, memory_mask = self.decoders(x, tgt_mask, memory,
memory_mask)
if self.normalize_before:
x = self.after_norm(x)
if self.output_layer is not None:
x = self.output_layer(x)
return x, tgt_mask
def forward_one_step(self, tgt, tgt_mask, memory, cache=None):
"""Forward one step.
Args:
tgt(Tensor):
Input token ids, int64 (#batch, maxlen_out).
tgt_mask(Tensor):
Input token mask (#batch, maxlen_out).
memory(Tensor):
Encoded memory, float32 (#batch, maxlen_in, feat).
cache((List[Tensor]), optional):
List of cached tensors. (Default value = None)
Returns:
Tensor:
Output tensor (batch, maxlen_out, odim).
List[Tensor]:
List of cache tensors of each decoder layer.
"""
x = self.embed(tgt)
if cache is None:
cache = [None] * len(self.decoders)
new_cache = []
for c, decoder in zip(cache, self.decoders):
x, tgt_mask, memory, memory_mask = decoder(
x, tgt_mask, memory, None, cache=c)
new_cache.append(x)
if self.normalize_before:
y = self.after_norm(x[:, -1])
else:
y = x[:, -1]
if self.output_layer is not None:
y = F.log_softmax(self.output_layer(y), axis=-1)
return y, new_cache
# beam search API (see ScorerInterface)
def score(self, ys, state, x):
"""Score."""
ys_mask = subsequent_mask(len(ys)).unsqueeze(0)
if self.selfattention_layer_type != "selfattn":
# TODO(karita): implement cache
logging.warning(
f"{self.selfattention_layer_type} does not support cached decoding."
)
state = None
logp, state = self.forward_one_step(
ys.unsqueeze(0), ys_mask, x.unsqueeze(0), cache=state)
return logp.squeeze(0), state
# batch beam search API (see BatchScorerInterface)
def batch_score(self,
ys: paddle.Tensor,
states: List[Any],
xs: paddle.Tensor) -> Tuple[paddle.Tensor, List[Any]]:
"""Score new token batch (required).
Args:
ys(Tensor):
paddle.int64 prefix tokens (n_batch, ylen).
states(List[Any]):
Scorer states for prefix tokens.
xs(Tensor):
The encoder feature that generates ys (n_batch, xlen, n_feat).
Returns:
tuple[Tensor, List[Any]]:
Tuple ofbatchfied scores for next token with shape of `(n_batch, n_vocab)` and next state list for ys.
"""
# merge states
n_batch = len(ys)
n_layers = len(self.decoders)
if states[0] is None:
batch_state = None
else:
# transpose state of [batch, layer] into [layer, batch]
batch_state = [
paddle.stack([states[b][i] for b in range(n_batch)])
for i in range(n_layers)
]
# batch decoding
ys_mask = subsequent_mask(ys.shape[-1]).unsqueeze(0)
logp, states = self.forward_one_step(ys, ys_mask, xs, cache=batch_state)
# transpose state of [layer, batch] into [batch, layer]
state_list = [[states[i][b] for i in range(n_layers)]
for b in range(n_batch)]
return logp, state_list