You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/models/vits/flow.py

352 lines
11 KiB

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Basic Flow modules used in VITS.
This code is based on https://github.com/jaywalnut310/vits.
"""
import math
from typing import Optional
from typing import Tuple
from typing import Union
import paddle
from paddle import nn
from paddlespeech.t2s.models.vits.transform import piecewise_rational_quadratic_transform
class FlipFlow(nn.Layer):
"""Flip flow module."""
def forward(self, x: paddle.Tensor, *args, inverse: bool=False, **kwargs
) -> Union[paddle.Tensor, Tuple[paddle.Tensor, paddle.Tensor]]:
"""Calculate forward propagation.
Args:
x (Tensor):
Input tensor (B, channels, T).
inverse (bool):
Whether to inverse the flow.
Returns:
Tensor:
Flipped tensor (B, channels, T).
Tensor:
Log-determinant tensor for NLL (B,) if not inverse.
"""
x = paddle.flip(x, [1])
if not inverse:
logdet = paddle.zeros(paddle.shape(x)[0], dtype=x.dtype)
return x, logdet
else:
return x
class LogFlow(nn.Layer):
"""Log flow module."""
def forward(self,
x: paddle.Tensor,
x_mask: paddle.Tensor,
inverse: bool=False,
eps: float=1e-5,
**kwargs
) -> Union[paddle.Tensor, Tuple[paddle.Tensor, paddle.Tensor]]:
"""Calculate forward propagation.
Args:
x (Tensor):
Input tensor (B, channels, T).
x_mask (Tensor):
Mask tensor (B, 1, T).
inverse (bool):
Whether to inverse the flow.
eps (float):
Epsilon for log.
Returns:
Tensor:
Output tensor (B, channels, T).
Tensor:
Log-determinant tensor for NLL (B,) if not inverse.
"""
if not inverse:
y = paddle.log(paddle.clip(x, min=eps)) * x_mask
logdet = paddle.sum(-y, [1, 2])
return y, logdet
else:
x = paddle.exp(x) * x_mask
return x
class ElementwiseAffineFlow(nn.Layer):
"""Elementwise affine flow module."""
def __init__(self, channels: int):
"""Initialize ElementwiseAffineFlow module.
Args:
channels (int):
Number of channels.
"""
super().__init__()
self.channels = channels
m = paddle.zeros([channels, 1])
self.m = paddle.create_parameter(
shape=m.shape,
dtype=str(m.numpy().dtype),
default_initializer=paddle.nn.initializer.Assign(m))
logs = paddle.zeros([channels, 1])
self.logs = paddle.create_parameter(
shape=logs.shape,
dtype=str(logs.numpy().dtype),
default_initializer=paddle.nn.initializer.Assign(logs))
def forward(self,
x: paddle.Tensor,
x_mask: paddle.Tensor,
inverse: bool=False,
**kwargs
) -> Union[paddle.Tensor, Tuple[paddle.Tensor, paddle.Tensor]]:
"""Calculate forward propagation.
Args:
x (Tensor):
Input tensor (B, channels, T).
x_mask (Tensor):
Mask tensor (B, 1, T).
inverse (bool):
Whether to inverse the flow.
Returns:
Tensor:
Output tensor (B, channels, T).
Tensor:
Log-determinant tensor for NLL (B,) if not inverse.
"""
if not inverse:
y = self.m + paddle.exp(self.logs) * x
y = y * x_mask
logdet = paddle.sum(self.logs * x_mask, [1, 2])
return y, logdet
else:
x = (x - self.m) * paddle.exp(-self.logs) * x_mask
return x
class Transpose(nn.Layer):
"""Transpose module for paddle.nn.Sequential()."""
def __init__(self, dim1: int, dim2: int):
"""Initialize Transpose module."""
super().__init__()
self.dim1 = dim1
self.dim2 = dim2
def forward(self, x: paddle.Tensor) -> paddle.Tensor:
"""Transpose."""
len_dim = len(x.shape)
orig_perm = list(range(len_dim))
new_perm = orig_perm[:]
temp = new_perm[self.dim1]
new_perm[self.dim1] = new_perm[self.dim2]
new_perm[self.dim2] = temp
return paddle.transpose(x, new_perm)
class DilatedDepthSeparableConv(nn.Layer):
"""Dilated depth-separable conv module."""
def __init__(
self,
channels: int,
kernel_size: int,
layers: int,
dropout_rate: float=0.0,
eps: float=1e-5, ):
"""Initialize DilatedDepthSeparableConv module.
Args:
channels (int):
Number of channels.
kernel_size (int):
Kernel size.
layers (int):
Number of layers.
dropout_rate (float):
Dropout rate.
eps (float):
Epsilon for layer norm.
"""
super().__init__()
self.convs = nn.LayerList()
for i in range(layers):
dilation = kernel_size**i
padding = (kernel_size * dilation - dilation) // 2
self.convs.append(
nn.Sequential(
nn.Conv1D(
channels,
channels,
kernel_size,
groups=channels,
dilation=dilation,
padding=padding, ),
Transpose(1, 2),
nn.LayerNorm(channels, epsilon=eps),
Transpose(1, 2),
nn.GELU(),
nn.Conv1D(
channels,
channels,
1, ),
Transpose(1, 2),
nn.LayerNorm(channels, epsilon=eps),
Transpose(1, 2),
nn.GELU(),
nn.Dropout(dropout_rate), ))
def forward(self,
x: paddle.Tensor,
x_mask: paddle.Tensor,
g: Optional[paddle.Tensor]=None) -> paddle.Tensor:
"""Calculate forward propagation.
Args:
x (Tensor):
Input tensor (B, in_channels, T).
x_mask (Tensor):
Mask tensor (B, 1, T).
g (Optional[Tensor]):
Global conditioning tensor (B, global_channels, 1).
Returns:
Tensor:
Output tensor (B, channels, T).
"""
if g is not None:
x = x + g
for f in self.convs:
y = f(x * x_mask)
x = x + y
return x * x_mask
class ConvFlow(nn.Layer):
"""Convolutional flow module."""
def __init__(
self,
in_channels: int,
hidden_channels: int,
kernel_size: int,
layers: int,
bins: int=10,
tail_bound: float=5.0, ):
"""Initialize ConvFlow module.
Args:
in_channels (int):
Number of input channels.
hidden_channels (int):
Number of hidden channels.
kernel_size (int):
Kernel size.
layers (int):
Number of layers.
bins (int):
Number of bins.
tail_bound (float):
Tail bound value.
"""
super().__init__()
self.half_channels = in_channels // 2
self.hidden_channels = hidden_channels
self.bins = bins
self.tail_bound = tail_bound
self.input_conv = nn.Conv1D(
self.half_channels,
hidden_channels,
1, )
self.dds_conv = DilatedDepthSeparableConv(
hidden_channels,
kernel_size,
layers,
dropout_rate=0.0, )
self.proj = nn.Conv1D(
hidden_channels,
self.half_channels * (bins * 3 - 1),
1, )
weight = paddle.zeros(paddle.shape(self.proj.weight))
self.proj.weight = paddle.create_parameter(
shape=weight.shape,
dtype=str(weight.numpy().dtype),
default_initializer=paddle.nn.initializer.Assign(weight))
bias = paddle.zeros(paddle.shape(self.proj.bias))
self.proj.bias = paddle.create_parameter(
shape=bias.shape,
dtype=str(bias.numpy().dtype),
default_initializer=paddle.nn.initializer.Assign(bias))
def forward(
self,
x: paddle.Tensor,
x_mask: paddle.Tensor,
g: Optional[paddle.Tensor]=None,
inverse: bool=False,
) -> Union[paddle.Tensor, Tuple[paddle.Tensor, paddle.Tensor]]:
"""Calculate forward propagation.
Args:
x (Tensor):
Input tensor (B, channels, T).
x_mask (Tensor):
Mask tensor (B, 1, T).
g (Optional[Tensor]):
Global conditioning tensor (B, channels, 1).
inverse (bool):
Whether to inverse the flow.
Returns:
Tensor:
Output tensor (B, channels, T).
Tensor:
Log-determinant tensor for NLL (B,) if not inverse.
"""
xa, xb = x.split(2, 1)
h = self.input_conv(xa)
h = self.dds_conv(h, x_mask, g=g)
# (B, half_channels * (bins * 3 - 1), T)
h = self.proj(h) * x_mask
b, c, t = xa.shape
# (B, half_channels, bins * 3 - 1, T) -> (B, half_channels, T, bins * 3 - 1)
h = h.reshape([b, c, -1, t]).transpose([0, 1, 3, 2])
denom = math.sqrt(self.hidden_channels)
unnorm_widths = h[..., :self.bins] / denom
unnorm_heights = h[..., self.bins:2 * self.bins] / denom
unnorm_derivatives = h[..., 2 * self.bins:]
xb, logdet_abs = piecewise_rational_quadratic_transform(
inputs=xb,
unnormalized_widths=unnorm_widths,
unnormalized_heights=unnorm_heights,
unnormalized_derivatives=unnorm_derivatives,
inverse=inverse,
tails="linear",
tail_bound=self.tail_bound, )
x = paddle.concat([xa, xb], 1) * x_mask
logdet = paddle.sum(logdet_abs * x_mask, [1, 2])
if not inverse:
return x, logdet
else:
return x