You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
493 lines
18 KiB
493 lines
18 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# Modified from espnet(https://github.com/espnet/espnet)
|
|
"""Tacotron 2 related modules for paddle"""
|
|
import logging
|
|
from typing import Dict
|
|
from typing import Optional
|
|
from typing import Tuple
|
|
|
|
import paddle
|
|
import paddle.nn.functional as F
|
|
from paddle import nn
|
|
from typeguard import check_argument_types
|
|
|
|
from paddlespeech.t2s.modules.nets_utils import initialize
|
|
from paddlespeech.t2s.modules.nets_utils import make_pad_mask
|
|
from paddlespeech.t2s.modules.tacotron2.attentions import AttForward
|
|
from paddlespeech.t2s.modules.tacotron2.attentions import AttForwardTA
|
|
from paddlespeech.t2s.modules.tacotron2.attentions import AttLoc
|
|
from paddlespeech.t2s.modules.tacotron2.decoder import Decoder
|
|
from paddlespeech.t2s.modules.tacotron2.encoder import Encoder
|
|
|
|
|
|
class Tacotron2(nn.Layer):
|
|
"""Tacotron2 module for end-to-end text-to-speech.
|
|
|
|
This is a module of Spectrogram prediction network in Tacotron2 described
|
|
in `Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`_,
|
|
which converts the sequence of characters into the sequence of Mel-filterbanks.
|
|
|
|
.. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`:
|
|
https://arxiv.org/abs/1712.05884
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
# network structure related
|
|
idim: int,
|
|
odim: int,
|
|
embed_dim: int=512,
|
|
elayers: int=1,
|
|
eunits: int=512,
|
|
econv_layers: int=3,
|
|
econv_chans: int=512,
|
|
econv_filts: int=5,
|
|
atype: str="location",
|
|
adim: int=512,
|
|
aconv_chans: int=32,
|
|
aconv_filts: int=15,
|
|
cumulate_att_w: bool=True,
|
|
dlayers: int=2,
|
|
dunits: int=1024,
|
|
prenet_layers: int=2,
|
|
prenet_units: int=256,
|
|
postnet_layers: int=5,
|
|
postnet_chans: int=512,
|
|
postnet_filts: int=5,
|
|
output_activation: str=None,
|
|
use_batch_norm: bool=True,
|
|
use_concate: bool=True,
|
|
use_residual: bool=False,
|
|
reduction_factor: int=1,
|
|
# extra embedding related
|
|
spk_num: Optional[int]=None,
|
|
lang_num: Optional[int]=None,
|
|
spk_embed_dim: Optional[int]=None,
|
|
spk_embed_integration_type: str="concat",
|
|
dropout_rate: float=0.5,
|
|
zoneout_rate: float=0.1,
|
|
# training related
|
|
init_type: str="xavier_uniform", ):
|
|
"""Initialize Tacotron2 module.
|
|
Args:
|
|
idim (int):
|
|
Dimension of the inputs.
|
|
odim (int):
|
|
Dimension of the outputs.
|
|
embed_dim (int):
|
|
Dimension of the token embedding.
|
|
elayers (int):
|
|
Number of encoder blstm layers.
|
|
eunits (int):
|
|
Number of encoder blstm units.
|
|
econv_layers (int):
|
|
Number of encoder conv layers.
|
|
econv_filts (int):
|
|
Number of encoder conv filter size.
|
|
econv_chans (int):
|
|
Number of encoder conv filter channels.
|
|
dlayers (int):
|
|
Number of decoder lstm layers.
|
|
dunits (int):
|
|
Number of decoder lstm units.
|
|
prenet_layers (int):
|
|
Number of prenet layers.
|
|
prenet_units (int):
|
|
Number of prenet units.
|
|
postnet_layers (int):
|
|
Number of postnet layers.
|
|
postnet_filts (int):
|
|
Number of postnet filter size.
|
|
postnet_chans (int):
|
|
Number of postnet filter channels.
|
|
output_activation (str):
|
|
Name of activation function for outputs.
|
|
adim (int):
|
|
Number of dimension of mlp in attention.
|
|
aconv_chans (int):
|
|
Number of attention conv filter channels.
|
|
aconv_filts (int):
|
|
Number of attention conv filter size.
|
|
cumulate_att_w (bool):
|
|
Whether to cumulate previous attention weight.
|
|
use_batch_norm (bool):
|
|
Whether to use batch normalization.
|
|
use_concate (bool):
|
|
Whether to concat enc outputs w/ dec lstm outputs.
|
|
reduction_factor (int):
|
|
Reduction factor.
|
|
spk_num (Optional[int]):
|
|
Number of speakers. If set to > 1, assume that the
|
|
sids will be provided as the input and use sid embedding layer.
|
|
lang_num (Optional[int]):
|
|
Number of languages. If set to > 1, assume that the
|
|
lids will be provided as the input and use sid embedding layer.
|
|
spk_embed_dim (Optional[int]):
|
|
Speaker embedding dimension. If set to > 0,
|
|
assume that spk_emb will be provided as the input.
|
|
spk_embed_integration_type (str):
|
|
How to integrate speaker embedding.
|
|
dropout_rate (float):
|
|
Dropout rate.
|
|
zoneout_rate (float):
|
|
Zoneout rate.
|
|
"""
|
|
assert check_argument_types()
|
|
super().__init__()
|
|
|
|
# store hyperparameters
|
|
self.idim = idim
|
|
self.odim = odim
|
|
self.eos = idim - 1
|
|
self.cumulate_att_w = cumulate_att_w
|
|
self.reduction_factor = reduction_factor
|
|
|
|
# define activation function for the final output
|
|
if output_activation is None:
|
|
self.output_activation_fn = None
|
|
elif hasattr(F, output_activation):
|
|
self.output_activation_fn = getattr(F, output_activation)
|
|
else:
|
|
raise ValueError(f"there is no such an activation function. "
|
|
f"({output_activation})")
|
|
|
|
# set padding idx
|
|
padding_idx = 0
|
|
self.padding_idx = padding_idx
|
|
|
|
# initialize parameters
|
|
initialize(self, init_type)
|
|
|
|
# define network modules
|
|
self.enc = Encoder(
|
|
idim=idim,
|
|
embed_dim=embed_dim,
|
|
elayers=elayers,
|
|
eunits=eunits,
|
|
econv_layers=econv_layers,
|
|
econv_chans=econv_chans,
|
|
econv_filts=econv_filts,
|
|
use_batch_norm=use_batch_norm,
|
|
use_residual=use_residual,
|
|
dropout_rate=dropout_rate,
|
|
padding_idx=padding_idx, )
|
|
|
|
self.spk_num = None
|
|
if spk_num is not None and spk_num > 1:
|
|
self.spk_num = spk_num
|
|
self.sid_emb = nn.Embedding(spk_num, eunits)
|
|
self.lang_num = None
|
|
if lang_num is not None and lang_num > 1:
|
|
self.lang_num = lang_num
|
|
self.lid_emb = nn.Embedding(lang_num, eunits)
|
|
|
|
self.spk_embed_dim = None
|
|
if spk_embed_dim is not None and spk_embed_dim > 0:
|
|
self.spk_embed_dim = spk_embed_dim
|
|
self.spk_embed_integration_type = spk_embed_integration_type
|
|
if self.spk_embed_dim is None:
|
|
dec_idim = eunits
|
|
elif self.spk_embed_integration_type == "concat":
|
|
dec_idim = eunits + spk_embed_dim
|
|
elif self.spk_embed_integration_type == "add":
|
|
dec_idim = eunits
|
|
self.projection = nn.Linear(self.spk_embed_dim, eunits)
|
|
else:
|
|
raise ValueError(f"{spk_embed_integration_type} is not supported.")
|
|
|
|
if atype == "location":
|
|
att = AttLoc(dec_idim, dunits, adim, aconv_chans, aconv_filts)
|
|
elif atype == "forward":
|
|
att = AttForward(dec_idim, dunits, adim, aconv_chans, aconv_filts)
|
|
if self.cumulate_att_w:
|
|
logging.warning("cumulation of attention weights is disabled "
|
|
"in forward attention.")
|
|
self.cumulate_att_w = False
|
|
elif atype == "forward_ta":
|
|
att = AttForwardTA(dec_idim, dunits, adim, aconv_chans, aconv_filts,
|
|
odim)
|
|
if self.cumulate_att_w:
|
|
logging.warning("cumulation of attention weights is disabled "
|
|
"in forward attention.")
|
|
self.cumulate_att_w = False
|
|
else:
|
|
raise NotImplementedError("Support only location or forward")
|
|
self.dec = Decoder(
|
|
idim=dec_idim,
|
|
odim=odim,
|
|
att=att,
|
|
dlayers=dlayers,
|
|
dunits=dunits,
|
|
prenet_layers=prenet_layers,
|
|
prenet_units=prenet_units,
|
|
postnet_layers=postnet_layers,
|
|
postnet_chans=postnet_chans,
|
|
postnet_filts=postnet_filts,
|
|
output_activation_fn=self.output_activation_fn,
|
|
cumulate_att_w=self.cumulate_att_w,
|
|
use_batch_norm=use_batch_norm,
|
|
use_concate=use_concate,
|
|
dropout_rate=dropout_rate,
|
|
zoneout_rate=zoneout_rate,
|
|
reduction_factor=reduction_factor, )
|
|
|
|
nn.initializer.set_global_initializer(None)
|
|
|
|
def forward(
|
|
self,
|
|
text: paddle.Tensor,
|
|
text_lengths: paddle.Tensor,
|
|
speech: paddle.Tensor,
|
|
speech_lengths: paddle.Tensor,
|
|
spk_emb: Optional[paddle.Tensor]=None,
|
|
spk_id: Optional[paddle.Tensor]=None,
|
|
lang_id: Optional[paddle.Tensor]=None
|
|
) -> Tuple[paddle.Tensor, Dict[str, paddle.Tensor], paddle.Tensor]:
|
|
"""Calculate forward propagation.
|
|
|
|
Args:
|
|
text (Tensor(int64)):
|
|
Batch of padded character ids (B, T_text).
|
|
text_lengths (Tensor(int64)):
|
|
Batch of lengths of each input batch (B,).
|
|
speech (Tensor):
|
|
Batch of padded target features (B, T_feats, odim).
|
|
speech_lengths (Tensor(int64)):
|
|
Batch of the lengths of each target (B,).
|
|
spk_emb (Optional[Tensor]):
|
|
Batch of speaker embeddings (B, spk_embed_dim).
|
|
spk_id (Optional[Tensor]):
|
|
Batch of speaker IDs (B, 1).
|
|
lang_id (Optional[Tensor]):
|
|
Batch of language IDs (B, 1).
|
|
|
|
Returns:
|
|
Tensor:
|
|
Loss scalar value.
|
|
Dict:
|
|
Statistics to be monitored.
|
|
Tensor:
|
|
Weight value if not joint training else model outputs.
|
|
|
|
"""
|
|
text = text[:, :text_lengths.max()]
|
|
speech = speech[:, :speech_lengths.max()]
|
|
|
|
batch_size = paddle.shape(text)[0]
|
|
|
|
# Add eos at the last of sequence
|
|
xs = F.pad(text, [0, 0, 0, 1], "constant", self.padding_idx)
|
|
for i, l in enumerate(text_lengths):
|
|
xs[i, l] = self.eos
|
|
ilens = text_lengths + 1
|
|
|
|
ys = speech
|
|
olens = speech_lengths
|
|
|
|
# make labels for stop prediction
|
|
stop_labels = make_pad_mask(olens - 1)
|
|
# bool 类型无法切片
|
|
stop_labels = paddle.cast(stop_labels, dtype='float32')
|
|
stop_labels = F.pad(stop_labels, [0, 0, 0, 1], "constant", 1.0)
|
|
|
|
# calculate tacotron2 outputs
|
|
after_outs, before_outs, logits, att_ws = self._forward(
|
|
xs=xs,
|
|
ilens=ilens,
|
|
ys=ys,
|
|
olens=olens,
|
|
spk_emb=spk_emb,
|
|
spk_id=spk_id,
|
|
lang_id=lang_id, )
|
|
|
|
# modify mod part of groundtruth
|
|
if self.reduction_factor > 1:
|
|
assert olens.ge(self.reduction_factor).all(
|
|
), "Output length must be greater than or equal to reduction factor."
|
|
olens = olens - olens % self.reduction_factor
|
|
max_out = max(olens)
|
|
ys = ys[:, :max_out]
|
|
stop_labels = stop_labels[:, :max_out]
|
|
stop_labels = paddle.scatter(stop_labels, 1,
|
|
(olens - 1).unsqueeze(1), 1.0)
|
|
olens_in = olens // self.reduction_factor
|
|
else:
|
|
olens_in = olens
|
|
return after_outs, before_outs, logits, ys, stop_labels, olens, att_ws, olens_in
|
|
|
|
def _forward(
|
|
self,
|
|
xs: paddle.Tensor,
|
|
ilens: paddle.Tensor,
|
|
ys: paddle.Tensor,
|
|
olens: paddle.Tensor,
|
|
spk_emb: paddle.Tensor,
|
|
spk_id: paddle.Tensor,
|
|
lang_id: paddle.Tensor,
|
|
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
|
|
|
|
hs, hlens = self.enc(xs, ilens)
|
|
if self.spk_num is not None:
|
|
sid_embs = self.sid_emb(spk_id.reshape([-1]))
|
|
hs = hs + sid_embs.unsqueeze(1)
|
|
if self.lang_num is not None:
|
|
lid_embs = self.lid_emb(lang_id.reshape([-1]))
|
|
hs = hs + lid_embs.unsqueeze(1)
|
|
if self.spk_embed_dim is not None:
|
|
hs = self._integrate_with_spk_embed(hs, spk_emb)
|
|
|
|
return self.dec(hs, hlens, ys)
|
|
|
|
def inference(
|
|
self,
|
|
text: paddle.Tensor,
|
|
speech: Optional[paddle.Tensor]=None,
|
|
spk_emb: Optional[paddle.Tensor]=None,
|
|
spk_id: Optional[paddle.Tensor]=None,
|
|
lang_id: Optional[paddle.Tensor]=None,
|
|
threshold: float=0.5,
|
|
minlenratio: float=0.0,
|
|
maxlenratio: float=10.0,
|
|
use_att_constraint: bool=False,
|
|
backward_window: int=1,
|
|
forward_window: int=3,
|
|
use_teacher_forcing: bool=False, ) -> Dict[str, paddle.Tensor]:
|
|
"""Generate the sequence of features given the sequences of characters.
|
|
|
|
Args:
|
|
text (Tensor(int64)):
|
|
Input sequence of characters (T_text,).
|
|
speech (Optional[Tensor]):
|
|
Feature sequence to extract style (N, idim).
|
|
spk_emb (ptional[Tensor]):
|
|
Speaker embedding (spk_embed_dim,).
|
|
spk_id (Optional[Tensor]):
|
|
Speaker ID (1,).
|
|
lang_id (Optional[Tensor]):
|
|
Language ID (1,).
|
|
threshold (float):
|
|
Threshold in inference.
|
|
minlenratio (float):
|
|
Minimum length ratio in inference.
|
|
maxlenratio (float):
|
|
Maximum length ratio in inference.
|
|
use_att_constraint (bool):
|
|
Whether to apply attention constraint.
|
|
backward_window (int):
|
|
Backward window in attention constraint.
|
|
forward_window (int):
|
|
Forward window in attention constraint.
|
|
use_teacher_forcing (bool):
|
|
Whether to use teacher forcing.
|
|
|
|
Returns:
|
|
Dict[str, Tensor]
|
|
Output dict including the following items:
|
|
* feat_gen (Tensor): Output sequence of features (T_feats, odim).
|
|
* prob (Tensor): Output sequence of stop probabilities (T_feats,).
|
|
* att_w (Tensor): Attention weights (T_feats, T).
|
|
|
|
"""
|
|
x = text
|
|
y = speech
|
|
|
|
# add eos at the last of sequence
|
|
x = F.pad(x, [0, 1], "constant", self.eos)
|
|
|
|
# inference with teacher forcing
|
|
if use_teacher_forcing:
|
|
assert speech is not None, "speech must be provided with teacher forcing."
|
|
|
|
xs, ys = x.unsqueeze(0), y.unsqueeze(0)
|
|
spk_emb = None if spk_emb is None else spk_emb.unsqueeze(0)
|
|
ilens = paddle.shape(xs)[1]
|
|
olens = paddle.shape(ys)[1]
|
|
outs, _, _, att_ws = self._forward(
|
|
xs=xs,
|
|
ilens=ilens,
|
|
ys=ys,
|
|
olens=olens,
|
|
spk_emb=spk_emb,
|
|
spk_id=spk_id,
|
|
lang_id=lang_id, )
|
|
|
|
return dict(feat_gen=outs[0], att_w=att_ws[0])
|
|
|
|
# inference
|
|
h = self.enc.inference(x)
|
|
|
|
if self.spk_num is not None:
|
|
sid_emb = self.sid_emb(spk_id.reshape([-1]))
|
|
h = h + sid_emb
|
|
if self.lang_num is not None:
|
|
lid_emb = self.lid_emb(lang_id.reshape([-1]))
|
|
h = h + lid_emb
|
|
if self.spk_embed_dim is not None:
|
|
hs, spk_emb = h.unsqueeze(0), spk_emb.unsqueeze(0)
|
|
h = self._integrate_with_spk_embed(hs, spk_emb)[0]
|
|
out, prob, att_w = self.dec.inference(
|
|
h,
|
|
threshold=threshold,
|
|
minlenratio=minlenratio,
|
|
maxlenratio=maxlenratio,
|
|
use_att_constraint=use_att_constraint,
|
|
backward_window=backward_window,
|
|
forward_window=forward_window, )
|
|
|
|
return dict(feat_gen=out, prob=prob, att_w=att_w)
|
|
|
|
def _integrate_with_spk_embed(self,
|
|
hs: paddle.Tensor,
|
|
spk_emb: paddle.Tensor) -> paddle.Tensor:
|
|
"""Integrate speaker embedding with hidden states.
|
|
|
|
Args:
|
|
hs (Tensor): Batch of hidden state sequences (B, Tmax, eunits).
|
|
spk_emb (Tensor): Batch of speaker embeddings (B, spk_embed_dim).
|
|
|
|
Returns:
|
|
Tensor: Batch of integrated hidden state sequences (B, Tmax, eunits) if
|
|
integration_type is "add" else (B, Tmax, eunits + spk_embed_dim).
|
|
|
|
"""
|
|
if self.spk_embed_integration_type == "add":
|
|
# apply projection and then add to hidden states
|
|
spk_emb = self.projection(F.normalize(spk_emb))
|
|
hs = hs + spk_emb.unsqueeze(1)
|
|
elif self.spk_embed_integration_type == "concat":
|
|
# concat hidden states with spk embeds
|
|
spk_emb = F.normalize(spk_emb).unsqueeze(1).expand(
|
|
shape=[-1, paddle.shape(hs)[1], -1])
|
|
hs = paddle.concat([hs, spk_emb], axis=-1)
|
|
else:
|
|
raise NotImplementedError("support only add or concat.")
|
|
|
|
return hs
|
|
|
|
|
|
class Tacotron2Inference(nn.Layer):
|
|
def __init__(self, normalizer, model):
|
|
super().__init__()
|
|
self.normalizer = normalizer
|
|
self.acoustic_model = model
|
|
|
|
def forward(self, text, spk_id=None, spk_emb=None):
|
|
out = self.acoustic_model.inference(
|
|
text, spk_id=spk_id, spk_emb=spk_emb)
|
|
normalized_mel = out["feat_gen"]
|
|
logmel = self.normalizer.inverse(normalized_mel)
|
|
return logmel
|