You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
309 lines
10 KiB
309 lines
10 KiB
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import logging
|
|
from typing import Any
|
|
from typing import Dict
|
|
|
|
from paddle import distributed as dist
|
|
from paddle.io import DataLoader
|
|
from paddle.nn import Layer
|
|
from paddle.optimizer import Optimizer
|
|
from paddle.optimizer.lr import LRScheduler
|
|
|
|
from paddlespeech.t2s.models.starganv2_vc.losses import compute_d_loss
|
|
from paddlespeech.t2s.models.starganv2_vc.losses import compute_g_loss
|
|
from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator
|
|
from paddlespeech.t2s.training.reporter import report
|
|
from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater
|
|
from paddlespeech.t2s.training.updaters.standard_updater import UpdaterState
|
|
|
|
logging.basicConfig(
|
|
format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s',
|
|
datefmt='[%Y-%m-%d %H:%M:%S]')
|
|
logger = logging.getLogger(__name__)
|
|
logger.setLevel(logging.INFO)
|
|
|
|
|
|
class StarGANv2VCUpdater(StandardUpdater):
|
|
def __init__(self,
|
|
models: Dict[str, Layer],
|
|
optimizers: Dict[str, Optimizer],
|
|
schedulers: Dict[str, LRScheduler],
|
|
dataloader: DataLoader,
|
|
g_loss_params: Dict[str, Any]={
|
|
'lambda_sty': 1.,
|
|
'lambda_cyc': 5.,
|
|
'lambda_ds': 1.,
|
|
'lambda_norm': 1.,
|
|
'lambda_asr': 10.,
|
|
'lambda_f0': 5.,
|
|
'lambda_f0_sty': 0.1,
|
|
'lambda_adv': 2.,
|
|
'lambda_adv_cls': 0.5,
|
|
'norm_bias': 0.5,
|
|
},
|
|
d_loss_params: Dict[str, Any]={
|
|
'lambda_reg': 1.,
|
|
'lambda_adv_cls': 0.1,
|
|
'lambda_con_reg': 10.,
|
|
},
|
|
adv_cls_epoch: int=50,
|
|
con_reg_epoch: int=30,
|
|
use_r1_reg: bool=False,
|
|
output_dir=None):
|
|
self.models = models
|
|
|
|
self.optimizers = optimizers
|
|
self.optimizer_g = optimizers['generator']
|
|
self.optimizer_s = optimizers['style_encoder']
|
|
self.optimizer_m = optimizers['mapping_network']
|
|
self.optimizer_d = optimizers['discriminator']
|
|
|
|
self.schedulers = schedulers
|
|
self.scheduler_g = schedulers['generator']
|
|
self.scheduler_s = schedulers['style_encoder']
|
|
self.scheduler_m = schedulers['mapping_network']
|
|
self.scheduler_d = schedulers['discriminator']
|
|
|
|
self.dataloader = dataloader
|
|
|
|
self.g_loss_params = g_loss_params
|
|
self.d_loss_params = d_loss_params
|
|
|
|
self.use_r1_reg = use_r1_reg
|
|
self.con_reg_epoch = con_reg_epoch
|
|
self.adv_cls_epoch = adv_cls_epoch
|
|
|
|
self.state = UpdaterState(iteration=0, epoch=0)
|
|
self.train_iterator = iter(self.dataloader)
|
|
|
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
|
self.filehandler = logging.FileHandler(str(log_file))
|
|
logger.addHandler(self.filehandler)
|
|
self.logger = logger
|
|
self.msg = ""
|
|
|
|
def zero_grad(self):
|
|
self.optimizer_d.clear_grad()
|
|
self.optimizer_g.clear_grad()
|
|
self.optimizer_m.clear_grad()
|
|
self.optimizer_s.clear_grad()
|
|
|
|
def scheduler(self):
|
|
self.scheduler_d.step()
|
|
self.scheduler_g.step()
|
|
self.scheduler_m.step()
|
|
self.scheduler_s.step()
|
|
|
|
def update_core(self, batch):
|
|
self.msg = "Rank: {}, ".format(dist.get_rank())
|
|
losses_dict = {}
|
|
# parse batch
|
|
x_real = batch['x_real']
|
|
y_org = batch['y_org']
|
|
x_ref = batch['x_ref']
|
|
x_ref2 = batch['x_ref2']
|
|
y_trg = batch['y_trg']
|
|
z_trg = batch['z_trg']
|
|
z_trg2 = batch['z_trg2']
|
|
|
|
use_con_reg = (self.state.epoch >= self.con_reg_epoch)
|
|
use_adv_cls = (self.state.epoch >= self.adv_cls_epoch)
|
|
|
|
# Discriminator loss
|
|
# train the discriminator (by random reference)
|
|
self.zero_grad()
|
|
random_d_loss = compute_d_loss(
|
|
nets=self.models,
|
|
x_real=x_real,
|
|
y_org=y_org,
|
|
y_trg=y_trg,
|
|
z_trg=z_trg,
|
|
use_adv_cls=use_adv_cls,
|
|
use_con_reg=use_con_reg,
|
|
**self.d_loss_params)
|
|
random_d_loss.backward()
|
|
self.optimizer_d.step()
|
|
# train the discriminator (by target reference)
|
|
self.zero_grad()
|
|
target_d_loss = compute_d_loss(
|
|
nets=self.models,
|
|
x_real=x_real,
|
|
y_org=y_org,
|
|
y_trg=y_trg,
|
|
x_ref=x_ref,
|
|
use_adv_cls=use_adv_cls,
|
|
use_con_reg=use_con_reg,
|
|
**self.d_loss_params)
|
|
target_d_loss.backward()
|
|
self.optimizer_d.step()
|
|
report("train/random_d_loss", float(random_d_loss))
|
|
report("train/target_d_loss", float(target_d_loss))
|
|
losses_dict["random_d_loss"] = float(random_d_loss)
|
|
losses_dict["target_d_loss"] = float(target_d_loss)
|
|
|
|
# Generator
|
|
# train the generator (by random reference)
|
|
self.zero_grad()
|
|
random_g_loss = compute_g_loss(
|
|
nets=self.models,
|
|
x_real=x_real,
|
|
y_org=y_org,
|
|
y_trg=y_trg,
|
|
z_trgs=[z_trg, z_trg2],
|
|
use_adv_cls=use_adv_cls,
|
|
**self.g_loss_params)
|
|
random_g_loss.backward()
|
|
self.optimizer_g.step()
|
|
self.optimizer_m.step()
|
|
self.optimizer_s.step()
|
|
|
|
# train the generator (by target reference)
|
|
self.zero_grad()
|
|
target_g_loss = compute_g_loss(
|
|
nets=self.models,
|
|
x_real=x_real,
|
|
y_org=y_org,
|
|
y_trg=y_trg,
|
|
x_refs=[x_ref, x_ref2],
|
|
use_adv_cls=use_adv_cls,
|
|
**self.g_loss_params)
|
|
target_g_loss.backward()
|
|
# 此处是否要 optimizer_g optimizer_m optimizer_s 都写上?
|
|
# 源码没写上后两个是否是疏忽?
|
|
self.optimizer_g.step()
|
|
# self.optimizer_m.step()
|
|
# self.optimizer_s.step()
|
|
report("train/random_g_loss", float(random_g_loss))
|
|
report("train/target_g_loss", float(target_g_loss))
|
|
losses_dict["random_g_loss"] = float(random_g_loss)
|
|
losses_dict["target_g_loss"] = float(target_g_loss)
|
|
|
|
self.scheduler()
|
|
|
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
for k, v in losses_dict.items())
|
|
|
|
|
|
class StarGANv2VCEvaluator(StandardEvaluator):
|
|
def __init__(self,
|
|
models: Dict[str, Layer],
|
|
dataloader: DataLoader,
|
|
g_loss_params: Dict[str, Any]={
|
|
'lambda_sty': 1.,
|
|
'lambda_cyc': 5.,
|
|
'lambda_ds': 1.,
|
|
'lambda_norm': 1.,
|
|
'lambda_asr': 10.,
|
|
'lambda_f0': 5.,
|
|
'lambda_f0_sty': 0.1,
|
|
'lambda_adv': 2.,
|
|
'lambda_adv_cls': 0.5,
|
|
'norm_bias': 0.5,
|
|
},
|
|
d_loss_params: Dict[str, Any]={
|
|
'lambda_reg': 1.,
|
|
'lambda_adv_cls': 0.1,
|
|
'lambda_con_reg': 10.,
|
|
},
|
|
adv_cls_epoch: int=50,
|
|
con_reg_epoch: int=30,
|
|
use_r1_reg: bool=False,
|
|
output_dir=None):
|
|
self.models = models
|
|
|
|
self.dataloader = dataloader
|
|
|
|
self.g_loss_params = g_loss_params
|
|
self.d_loss_params = d_loss_params
|
|
|
|
self.use_r1_reg = use_r1_reg
|
|
self.con_reg_epoch = con_reg_epoch
|
|
self.adv_cls_epoch = adv_cls_epoch
|
|
|
|
log_file = output_dir / 'worker_{}.log'.format(dist.get_rank())
|
|
self.filehandler = logging.FileHandler(str(log_file))
|
|
logger.addHandler(self.filehandler)
|
|
self.logger = logger
|
|
self.msg = ""
|
|
|
|
def evaluate_core(self, batch):
|
|
# logging.debug("Evaluate: ")
|
|
self.msg = "Evaluate: "
|
|
losses_dict = {}
|
|
|
|
x_real = batch['x_real']
|
|
y_org = batch['y_org']
|
|
x_ref = batch['x_ref']
|
|
x_ref2 = batch['x_ref2']
|
|
y_trg = batch['y_trg']
|
|
z_trg = batch['z_trg']
|
|
z_trg2 = batch['z_trg2']
|
|
|
|
# eval the discriminator
|
|
|
|
random_d_loss = compute_d_loss(
|
|
nets=self.models,
|
|
x_real=x_real,
|
|
y_org=y_org,
|
|
y_trg=y_trg,
|
|
z_trg=z_trg,
|
|
use_r1_reg=self.use_r1_reg,
|
|
use_adv_cls=use_adv_cls,
|
|
**self.d_loss_params)
|
|
|
|
target_d_loss = compute_d_loss(
|
|
nets=self.models,
|
|
x_real=x_real,
|
|
y_org=y_org,
|
|
y_trg=y_trg,
|
|
x_ref=x_ref,
|
|
use_r1_reg=self.use_r1_reg,
|
|
use_adv_cls=use_adv_cls,
|
|
**self.d_loss_params)
|
|
|
|
report("eval/random_d_loss", float(random_d_loss))
|
|
report("eval/target_d_loss", float(target_d_loss))
|
|
losses_dict["random_d_loss"] = float(random_d_loss)
|
|
losses_dict["target_d_loss"] = float(target_d_loss)
|
|
|
|
# eval the generator
|
|
|
|
random_g_loss = compute_g_loss(
|
|
nets=self.models,
|
|
x_real=x_real,
|
|
y_org=y_org,
|
|
y_trg=y_trg,
|
|
z_trgs=[z_trg, z_trg2],
|
|
use_adv_cls=use_adv_cls,
|
|
**self.g_loss_params)
|
|
|
|
target_g_loss = compute_g_loss(
|
|
nets=self.models,
|
|
x_real=x_real,
|
|
y_org=y_org,
|
|
y_trg=y_trg,
|
|
x_refs=[x_ref, x_ref2],
|
|
use_adv_cls=use_adv_cls,
|
|
**self.g_loss_params)
|
|
|
|
report("eval/random_g_loss", float(random_g_loss))
|
|
report("eval/target_g_loss", float(target_g_loss))
|
|
losses_dict["random_g_loss"] = float(random_g_loss)
|
|
losses_dict["target_g_loss"] = float(target_g_loss)
|
|
|
|
self.msg += ', '.join('{}: {:>.6f}'.format(k, v)
|
|
for k, v in losses_dict.items())
|
|
self.logger.info(self.msg)
|