You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/paddlespeech/t2s/exps/vits/normalize.py

200 lines
6.1 KiB

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Normalize feature files and dump them."""
import argparse
import logging
from operator import itemgetter
from pathlib import Path
from typing import List
import jsonlines
import numpy as np
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
from paddlespeech.t2s.datasets.data_table import DataTable
from paddlespeech.t2s.utils import str2bool
INITIALS = [
'b', 'p', 'm', 'f', 'd', 't', 'n', 'l', 'g', 'k', 'h', 'zh', 'ch', 'sh',
'r', 'z', 'c', 's', 'j', 'q', 'x'
]
INITIALS += ['y', 'w', 'sp', 'spl', 'spn', 'sil']
def intersperse(lst, item):
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def insert_after_character(lst, item):
result = [item]
for phone in lst:
result.append(phone)
if phone not in INITIALS:
# finals has tones
assert phone[-1] in "12345"
result.append(item)
return result
def add_blank(phones: List[str],
filed: str="character",
blank_token: str="<pad>"):
if filed == "phone":
"""
add blank after phones
input: ["n", "i3", "h", "ao3", "m", "a5"]
output: ["n", "<pad>", "i3", "<pad>", "h", "<pad>", "ao3", "<pad>", "m", "<pad>", "a5"]
"""
phones = intersperse(phones, blank_token)
elif filed == "character":
"""
add blank after characters
input: ["n", "i3", "h", "ao3"]
output: ["n", "i3", "<pad>", "h", "ao3", "<pad>", "m", "a5"]
"""
phones = insert_after_character(phones, blank_token)
return phones
def main():
"""Run preprocessing process."""
parser = argparse.ArgumentParser(
description="Normalize dumped raw features (See detail in parallel_wavegan/bin/normalize.py)."
)
parser.add_argument(
"--metadata",
type=str,
required=True,
help="directory including feature files to be normalized. "
"you need to specify either *-scp or rootdir.")
parser.add_argument(
"--dumpdir",
type=str,
required=True,
help="directory to dump normalized feature files.")
parser.add_argument(
"--feats-stats",
type=str,
required=True,
help="speech statistics file.")
parser.add_argument(
"--skip-wav-copy",
default=False,
action="store_true",
help="whether to skip the copy of wav files.")
parser.add_argument(
"--phones-dict", type=str, default=None, help="phone vocabulary file.")
parser.add_argument(
"--speaker-dict", type=str, default=None, help="speaker id map file.")
parser.add_argument(
"--add-blank",
type=str2bool,
default=True,
help="whether to add blank between phones")
args = parser.parse_args()
dumpdir = Path(args.dumpdir).expanduser()
# use absolute path
dumpdir = dumpdir.resolve()
dumpdir.mkdir(parents=True, exist_ok=True)
# get dataset
with jsonlines.open(args.metadata, 'r') as reader:
metadata = list(reader)
dataset = DataTable(
metadata,
converters={
"feats": np.load,
"wave": None if args.skip_wav_copy else np.load,
})
logging.info(f"The number of files = {len(dataset)}.")
# restore scaler
feats_scaler = StandardScaler()
feats_scaler.mean_ = np.load(args.feats_stats)[0]
feats_scaler.scale_ = np.load(args.feats_stats)[1]
feats_scaler.n_features_in_ = feats_scaler.mean_.shape[0]
vocab_phones = {}
with open(args.phones_dict, 'rt') as f:
phn_id = [line.strip().split() for line in f.readlines()]
for phn, id in phn_id:
vocab_phones[phn] = int(id)
vocab_speaker = {}
with open(args.speaker_dict, 'rt') as f:
spk_id = [line.strip().split() for line in f.readlines()]
for spk, id in spk_id:
vocab_speaker[spk] = int(id)
# process each file
output_metadata = []
for item in tqdm(dataset):
utt_id = item['utt_id']
feats = item['feats']
wave = item['wave']
# normalize
feats = feats_scaler.transform(feats)
feats_path = dumpdir / f"{utt_id}_feats.npy"
np.save(feats_path, feats.astype(np.float32), allow_pickle=False)
if not args.skip_wav_copy:
wav_path = dumpdir / f"{utt_id}_wave.npy"
np.save(wav_path, wave.astype(np.float32), allow_pickle=False)
else:
wav_path = wave
phones = item['phones']
text_lengths = item['text_lengths']
if args.add_blank:
phones = add_blank(phones, filed="character")
text_lengths = len(phones)
phone_ids = [vocab_phones[p] for p in phones]
spk_id = vocab_speaker[item["speaker"]]
record = {
"utt_id": item['utt_id'],
"text": phone_ids,
"text_lengths": text_lengths,
'feats': str(feats_path),
"feats_lengths": item['feats_lengths'],
"wave": str(wav_path),
"spk_id": spk_id,
}
# add spk_emb for voice cloning
if "spk_emb" in item:
record["spk_emb"] = str(item["spk_emb"])
output_metadata.append(record)
output_metadata.sort(key=itemgetter('feats_lengths'), reverse=True)
output_metadata_path = Path(args.dumpdir) / "metadata.jsonl"
with jsonlines.open(output_metadata_path, 'w') as writer:
for item in output_metadata:
writer.write(item)
logging.info(f"metadata dumped into {output_metadata_path}")
if __name__ == "__main__":
main()