You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
5.9 KiB
176 lines
5.9 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
from typing import List
|
|
|
|
import numpy
|
|
from prettytable import PrettyTable
|
|
|
|
from ..resource import CommonTaskResource
|
|
from .entry import commands
|
|
from .utils import cli_register
|
|
from .utils import explicit_command_register
|
|
from .utils import get_command
|
|
|
|
__all__ = ['BaseCommand', 'HelpCommand', 'StatsCommand']
|
|
|
|
|
|
@cli_register(name='paddlespeech')
|
|
class BaseCommand:
|
|
def execute(self, argv: List[str]) -> bool:
|
|
help = get_command('paddlespeech.help')
|
|
return help().execute(argv)
|
|
|
|
|
|
@cli_register(name='paddlespeech.help', description='Show help for commands.')
|
|
class HelpCommand:
|
|
def execute(self, argv: List[str]) -> bool:
|
|
msg = 'Usage:\n'
|
|
msg += ' paddlespeech <command> <options>\n\n'
|
|
msg += 'Commands:\n'
|
|
for command, detail in commands['paddlespeech'].items():
|
|
if command.startswith('_'):
|
|
continue
|
|
|
|
if '_description' not in detail:
|
|
continue
|
|
msg += ' {:<15} {}\n'.format(command,
|
|
detail['_description'])
|
|
|
|
print(msg)
|
|
return True
|
|
|
|
|
|
@cli_register(
|
|
name='paddlespeech.version',
|
|
description='Show version and commit id of current package.')
|
|
class VersionCommand:
|
|
def execute(self, argv: List[str]) -> bool:
|
|
try:
|
|
from .. import __version__
|
|
version = __version__
|
|
except ImportError:
|
|
version = 'Not an official release'
|
|
|
|
try:
|
|
from .. import __commit__
|
|
commit_id = __commit__
|
|
except ImportError:
|
|
commit_id = 'Not found'
|
|
|
|
msg = 'Package Version:\n'
|
|
msg += ' {}\n\n'.format(version)
|
|
msg += 'Commit ID:\n'
|
|
msg += ' {}\n\n'.format(commit_id)
|
|
|
|
print(msg)
|
|
return True
|
|
|
|
|
|
model_name_format = {
|
|
'asr': 'Model-Size-Code Switch-Multilingual-Language-Sample Rate',
|
|
'cls': 'Model-Sample Rate',
|
|
'st': 'Model-Source language-Target language',
|
|
'text': 'Model-Task-Language',
|
|
'tts': 'Model-Language',
|
|
'vector': 'Model-Sample Rate',
|
|
'ssl': 'Model-Language-Sample Rate',
|
|
'whisper': 'Model-Language-Sample Rate'
|
|
}
|
|
|
|
|
|
@cli_register(
|
|
name='paddlespeech.stats',
|
|
description='Get speech tasks support models list.')
|
|
class StatsCommand:
|
|
def __init__(self):
|
|
self.parser = argparse.ArgumentParser(
|
|
prog='paddlespeech.stats', add_help=True)
|
|
self.task_choices = [
|
|
'asr', 'cls', 'st', 'text', 'tts', 'vector', 'kws', 'ssl', 'whisper'
|
|
]
|
|
self.parser.add_argument(
|
|
'--task',
|
|
type=str,
|
|
default='asr',
|
|
choices=self.task_choices,
|
|
help='Choose speech task.',
|
|
required=True)
|
|
|
|
def show_support_models(self, pretrained_models: dict):
|
|
fields = model_name_format[self.task].split("-")
|
|
table = PrettyTable(fields)
|
|
for key in pretrained_models:
|
|
line = key.split("-")
|
|
if self.task == "asr" and len(line) < len(fields):
|
|
for i in range(len(line), len(fields)):
|
|
line.append("-")
|
|
if "codeswitch" in key:
|
|
line[3], line[1] = line[1].split("_")[0], line[1].split(
|
|
"_")[1:]
|
|
elif "multilingual" in key:
|
|
line[4], line[1] = line[1].split("_")[0], line[1].split(
|
|
"_")[1:]
|
|
tmp = numpy.array(line)
|
|
idx = [0, 5, 3, 4, 1, 2]
|
|
line = tmp[idx]
|
|
table.add_row(line)
|
|
|
|
print(table)
|
|
|
|
def execute(self, argv: List[str]) -> bool:
|
|
parser_args = self.parser.parse_args(argv)
|
|
self.task = parser_args.task
|
|
if self.task not in self.task_choices:
|
|
print("Please input correct speech task, choices = " + str(
|
|
self.task_choices))
|
|
return
|
|
|
|
pretrained_models = CommonTaskResource(task=self.task).pretrained_models
|
|
|
|
try:
|
|
print(
|
|
"Here is the list of {} pretrained models released by PaddleSpeech that can be used by command line and python API"
|
|
.format(self.task.upper()))
|
|
self.show_support_models(pretrained_models)
|
|
return True
|
|
except BaseException:
|
|
print("Failed to get the list of {} pretrained models.".format(
|
|
self.task.upper()))
|
|
return False
|
|
|
|
|
|
# Dynamic import when running specific command
|
|
_commands = {
|
|
'asr': ['Speech to text infer command.', 'ASRExecutor'],
|
|
'cls': ['Audio classification infer command.', 'CLSExecutor'],
|
|
'st': ['Speech translation infer command.', 'STExecutor'],
|
|
'text': ['Text command.', 'TextExecutor'],
|
|
'tts': ['Text to Speech infer command.', 'TTSExecutor'],
|
|
'vector': ['Speech to vector embedding infer command.', 'VectorExecutor'],
|
|
'kws': ['Keyword Spotting infer command.', 'KWSExecutor'],
|
|
'ssl':
|
|
['Self-Supervised Learning Pretrained model infer command.', 'SSLExecutor'],
|
|
'whisper': [
|
|
'Whisper model for speech to text or translate speech to English.',
|
|
'WhisperExecutor'
|
|
]
|
|
}
|
|
|
|
for com, info in _commands.items():
|
|
explicit_command_register(
|
|
name='paddlespeech.{}'.format(com),
|
|
description=info[0],
|
|
cls='paddlespeech.cli.{}.{}'.format(com, info[1]))
|