You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/train.py

189 lines
5.9 KiB

"""Trainer for DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import distutils.util
import multiprocessing
import paddle.v2 as paddle
from model import DeepSpeech2Model
from data_utils.data import DataGenerator
import utils
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--batch_size", default=256, type=int, help="Minibatch size.")
parser.add_argument(
"--num_passes",
default=200,
type=int,
help="Training pass number. (default: %(default)s)")
parser.add_argument(
"--num_iterations_print",
default=100,
type=int,
help="Number of iterations for every train cost printing. "
"(default: %(default)s)")
parser.add_argument(
"--num_conv_layers",
default=2,
type=int,
help="Convolution layer number. (default: %(default)s)")
parser.add_argument(
"--num_rnn_layers",
default=3,
type=int,
help="RNN layer number. (default: %(default)s)")
parser.add_argument(
"--rnn_layer_size",
default=512,
type=int,
help="RNN layer cell number. (default: %(default)s)")
parser.add_argument(
"--adam_learning_rate",
default=5e-4,
type=float,
help="Learning rate for ADAM Optimizer. (default: %(default)s)")
parser.add_argument(
"--use_gpu",
default=True,
type=distutils.util.strtobool,
help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
"--use_sortagrad",
default=True,
type=distutils.util.strtobool,
help="Use sortagrad or not. (default: %(default)s)")
parser.add_argument(
"--specgram_type",
default='linear',
type=str,
help="Feature type of audio data: 'linear' (power spectrum)"
" or 'mfcc'. (default: %(default)s)")
parser.add_argument(
"--max_duration",
default=27.0,
type=float,
help="Audios with duration larger than this will be discarded. "
"(default: %(default)s)")
parser.add_argument(
"--min_duration",
default=0.0,
type=float,
help="Audios with duration smaller than this will be discarded. "
"(default: %(default)s)")
parser.add_argument(
"--shuffle_method",
default='batch_shuffle_clipped',
type=str,
help="Shuffle method: 'instance_shuffle', 'batch_shuffle', "
"'batch_shuffle_batch'. (default: %(default)s)")
parser.add_argument(
"--trainer_count",
default=8,
type=int,
help="Trainer number. (default: %(default)s)")
parser.add_argument(
"--num_threads_data",
default=multiprocessing.cpu_count() // 2,
type=int,
help="Number of cpu threads for preprocessing data. (default: %(default)s)")
parser.add_argument(
"--mean_std_filepath",
default='mean_std.npz',
type=str,
help="Manifest path for normalizer. (default: %(default)s)")
parser.add_argument(
"--train_manifest_path",
default='datasets/manifest.train',
type=str,
help="Manifest path for training. (default: %(default)s)")
parser.add_argument(
"--dev_manifest_path",
default='datasets/manifest.dev',
type=str,
help="Manifest path for validation. (default: %(default)s)")
parser.add_argument(
"--vocab_filepath",
default='datasets/vocab/eng_vocab.txt',
type=str,
help="Vocabulary filepath. (default: %(default)s)")
parser.add_argument(
"--init_model_path",
default=None,
type=str,
help="If set None, the training will start from scratch. "
"Otherwise, the training will resume from "
"the existing model of this path. (default: %(default)s)")
parser.add_argument(
"--output_model_dir",
default="./checkpoints",
type=str,
help="Directory for saving models. (default: %(default)s)")
parser.add_argument(
"--augmentation_config",
default='[{"type": "shift", '
'"params": {"min_shift_ms": -5, "max_shift_ms": 5},'
'"prob": 1.0}]',
type=str,
help="Augmentation configuration in json-format. "
"(default: %(default)s)")
args = parser.parse_args()
def train():
"""DeepSpeech2 training."""
train_generator = DataGenerator(
vocab_filepath=args.vocab_filepath,
mean_std_filepath=args.mean_std_filepath,
augmentation_config=args.augmentation_config,
max_duration=args.max_duration,
min_duration=args.min_duration,
specgram_type=args.specgram_type,
num_threads=args.num_threads_data)
dev_generator = DataGenerator(
vocab_filepath=args.vocab_filepath,
mean_std_filepath=args.mean_std_filepath,
augmentation_config="{}",
specgram_type=args.specgram_type,
num_threads=args.num_threads_data)
train_batch_reader = train_generator.batch_reader_creator(
manifest_path=args.train_manifest_path,
batch_size=args.batch_size,
min_batch_size=args.trainer_count,
sortagrad=args.use_sortagrad if args.init_model_path is None else False,
shuffle_method=args.shuffle_method)
dev_batch_reader = dev_generator.batch_reader_creator(
manifest_path=args.dev_manifest_path,
batch_size=args.batch_size,
min_batch_size=1, # must be 1, but will have errors.
sortagrad=False,
shuffle_method=None)
ds2_model = DeepSpeech2Model(
vocab_size=train_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_layer_size=args.rnn_layer_size,
pretrained_model_path=args.init_model_path)
ds2_model.train(
train_batch_reader=train_batch_reader,
dev_batch_reader=dev_batch_reader,
feeding_dict=train_generator.feeding,
learning_rate=args.adam_learning_rate,
gradient_clipping=400,
num_passes=args.num_passes,
num_iterations_print=args.num_iterations_print,
output_model_dir=args.output_model_dir)
def main():
utils.print_arguments(args)
paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count)
train()
if __name__ == '__main__':
main()