You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/deploy.py

196 lines
5.9 KiB

"""Deployment for DeepSpeech2 model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import gzip
import distutils.util
import multiprocessing
import paddle.v2 as paddle
from data_utils.data import DataGenerator
from model import deep_speech2
from swig_ctc_beam_search_decoder import *
from swig_scorer import Scorer
from error_rate import wer
import utils
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--num_samples",
default=100,
type=int,
help="Number of samples for inference. (default: %(default)s)")
parser.add_argument(
"--num_conv_layers",
default=2,
type=int,
help="Convolution layer number. (default: %(default)s)")
parser.add_argument(
"--num_rnn_layers",
default=3,
type=int,
help="RNN layer number. (default: %(default)s)")
parser.add_argument(
"--rnn_layer_size",
default=512,
type=int,
help="RNN layer cell number. (default: %(default)s)")
parser.add_argument(
"--use_gpu",
default=True,
type=distutils.util.strtobool,
help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
"--num_threads_data",
default=multiprocessing.cpu_count(),
type=int,
help="Number of cpu threads for preprocessing data. (default: %(default)s)")
parser.add_argument(
"--mean_std_filepath",
default='mean_std.npz',
type=str,
help="Manifest path for normalizer. (default: %(default)s)")
parser.add_argument(
"--decode_manifest_path",
default='datasets/manifest.test',
type=str,
help="Manifest path for decoding. (default: %(default)s)")
parser.add_argument(
"--model_filepath",
default='checkpoints/params.latest.tar.gz',
type=str,
help="Model filepath. (default: %(default)s)")
parser.add_argument(
"--vocab_filepath",
default='datasets/vocab/eng_vocab.txt',
type=str,
help="Vocabulary filepath. (default: %(default)s)")
parser.add_argument(
"--decode_method",
default='beam_search',
type=str,
help="Method for ctc decoding: best_path or beam_search. (default: %(default)s)"
)
parser.add_argument(
"--beam_size",
default=500,
type=int,
help="Width for beam search decoding. (default: %(default)d)")
parser.add_argument(
"--num_results_per_sample",
default=1,
type=int,
help="Number of output per sample in beam search. (default: %(default)d)")
parser.add_argument(
"--language_model_path",
default="lm/data/en.00.UNKNOWN.klm",
type=str,
help="Path for language model. (default: %(default)s)")
parser.add_argument(
"--alpha",
default=0.26,
type=float,
help="Parameter associated with language model. (default: %(default)f)")
parser.add_argument(
"--beta",
default=0.1,
type=float,
help="Parameter associated with word count. (default: %(default)f)")
parser.add_argument(
"--cutoff_prob",
default=0.99,
type=float,
help="The cutoff probability of pruning"
"in beam search. (default: %(default)f)")
args = parser.parse_args()
def infer():
"""Deployment for DeepSpeech2."""
# initialize data generator
data_generator = DataGenerator(
vocab_filepath=args.vocab_filepath,
mean_std_filepath=args.mean_std_filepath,
augmentation_config='{}',
num_threads=args.num_threads_data)
# create network config
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data = paddle.layer.data(
name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
text_data = paddle.layer.data(
name="transcript_text",
type=paddle.data_type.integer_value_sequence(data_generator.vocab_size))
output_probs = deep_speech2(
audio_data=audio_data,
text_data=text_data,
dict_size=data_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_size=args.rnn_layer_size,
is_inference=True)
# load parameters
parameters = paddle.parameters.Parameters.from_tar(
gzip.open(args.model_filepath))
# prepare infer data
batch_reader = data_generator.batch_reader_creator(
manifest_path=args.decode_manifest_path,
batch_size=args.num_samples,
min_batch_size=1,
sortagrad=False,
shuffle_method=None)
infer_data = batch_reader().next()
# run inference
infer_results = paddle.infer(
output_layer=output_probs, parameters=parameters, input=infer_data)
num_steps = len(infer_results) // len(infer_data)
probs_split = [
infer_results[i * num_steps:(i + 1) * num_steps]
for i in xrange(len(infer_data))
]
# targe transcription
target_transcription = [
''.join(
[data_generator.vocab_list[index] for index in infer_data[i][1]])
for i, probs in enumerate(probs_split)
]
# external scorer
ext_scorer = Scorer(args.alpha, args.beta, args.language_model_path)
## decode and print
wer_sum, wer_counter = 0, 0
for i, probs in enumerate(probs_split):
beam_result = ctc_beam_search_decoder(
probs.tolist(),
args.beam_size,
data_generator.vocab_list,
len(data_generator.vocab_list),
args.cutoff_prob,
ext_scorer, )
print("\nTarget Transcription:\t%s" % target_transcription[i])
print("Beam %d: %f \t%s" % (0, beam_result[0][0], beam_result[0][1]))
wer_cur = wer(target_transcription[i], beam_result[0][1])
wer_sum += wer_cur
wer_counter += 1
print("cur wer = %f , average wer = %f" %
(wer_cur, wer_sum / wer_counter))
def main():
utils.print_arguments(args)
paddle.init(use_gpu=args.use_gpu, trainer_count=1)
infer()
if __name__ == '__main__':
main()