|
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
#
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
# You may obtain a copy of the License at
|
|
|
#
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
#
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
# See the License for the specific language governing permissions and
|
|
|
# limitations under the License.
|
|
|
import argparse
|
|
|
import os
|
|
|
import sys
|
|
|
import time
|
|
|
from collections import OrderedDict
|
|
|
from typing import List
|
|
|
from typing import Optional
|
|
|
from typing import Union
|
|
|
|
|
|
import librosa
|
|
|
import numpy as np
|
|
|
import paddle
|
|
|
import soundfile
|
|
|
from yacs.config import CfgNode
|
|
|
|
|
|
from ..download import get_path_from_url
|
|
|
from ..executor import BaseExecutor
|
|
|
from ..log import logger
|
|
|
from ..utils import cli_register
|
|
|
from ..utils import CLI_TIMER
|
|
|
from ..utils import MODEL_HOME
|
|
|
from ..utils import stats_wrapper
|
|
|
from ..utils import timer_register
|
|
|
from .pretrained_models import model_alias
|
|
|
from .pretrained_models import pretrained_models
|
|
|
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
|
|
|
from paddlespeech.s2t.transform.transformation import Transformation
|
|
|
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
|
|
|
from paddlespeech.s2t.utils.utility import UpdateConfig
|
|
|
|
|
|
__all__ = ['ASRExecutor']
|
|
|
|
|
|
|
|
|
@timer_register
|
|
|
@cli_register(
|
|
|
name='paddlespeech.asr', description='Speech to text infer command.')
|
|
|
class ASRExecutor(BaseExecutor):
|
|
|
def __init__(self):
|
|
|
super().__init__()
|
|
|
self.model_alias = model_alias
|
|
|
self.pretrained_models = pretrained_models
|
|
|
|
|
|
self.parser = argparse.ArgumentParser(
|
|
|
prog='paddlespeech.asr', add_help=True)
|
|
|
self.parser.add_argument(
|
|
|
'--input', type=str, default=None, help='Audio file to recognize.')
|
|
|
self.parser.add_argument(
|
|
|
'--model',
|
|
|
type=str,
|
|
|
default='conformer_wenetspeech',
|
|
|
choices=[
|
|
|
tag[:tag.index('-')] for tag in self.pretrained_models.keys()
|
|
|
],
|
|
|
help='Choose model type of asr task.')
|
|
|
self.parser.add_argument(
|
|
|
'--lang',
|
|
|
type=str,
|
|
|
default='zh',
|
|
|
help='Choose model language. zh or en, zh:[conformer_wenetspeech-zh-16k], en:[transformer_librispeech-en-16k]'
|
|
|
)
|
|
|
self.parser.add_argument(
|
|
|
"--sample_rate",
|
|
|
type=int,
|
|
|
default=16000,
|
|
|
choices=[8000, 16000],
|
|
|
help='Choose the audio sample rate of the model. 8000 or 16000')
|
|
|
self.parser.add_argument(
|
|
|
'--config',
|
|
|
type=str,
|
|
|
default=None,
|
|
|
help='Config of asr task. Use deault config when it is None.')
|
|
|
self.parser.add_argument(
|
|
|
'--decode_method',
|
|
|
type=str,
|
|
|
default='attention_rescoring',
|
|
|
choices=[
|
|
|
'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention',
|
|
|
'attention_rescoring'
|
|
|
],
|
|
|
help='only support transformer and conformer model')
|
|
|
self.parser.add_argument(
|
|
|
'--ckpt_path',
|
|
|
type=str,
|
|
|
default=None,
|
|
|
help='Checkpoint file of model.')
|
|
|
self.parser.add_argument(
|
|
|
'--yes',
|
|
|
'-y',
|
|
|
action="store_true",
|
|
|
default=False,
|
|
|
help='No additional parameters required. Once set this parameter, it means accepting the request of the program by default, which includes transforming the audio sample rate'
|
|
|
)
|
|
|
self.parser.add_argument(
|
|
|
'--rtf',
|
|
|
action="store_true",
|
|
|
default=False,
|
|
|
help='Show Real-time Factor(RTF).')
|
|
|
self.parser.add_argument(
|
|
|
'--device',
|
|
|
type=str,
|
|
|
default=paddle.get_device(),
|
|
|
help='Choose device to execute model inference.')
|
|
|
self.parser.add_argument(
|
|
|
'-d',
|
|
|
'--job_dump_result',
|
|
|
action='store_true',
|
|
|
help='Save job result into file.')
|
|
|
self.parser.add_argument(
|
|
|
'-v',
|
|
|
'--verbose',
|
|
|
action='store_true',
|
|
|
help='Increase logger verbosity of current task.')
|
|
|
|
|
|
def _init_from_path(self,
|
|
|
model_type: str='wenetspeech',
|
|
|
lang: str='zh',
|
|
|
sample_rate: int=16000,
|
|
|
cfg_path: Optional[os.PathLike]=None,
|
|
|
decode_method: str='attention_rescoring',
|
|
|
ckpt_path: Optional[os.PathLike]=None):
|
|
|
"""
|
|
|
Init model and other resources from a specific path.
|
|
|
"""
|
|
|
logger.info("start to init the model")
|
|
|
if hasattr(self, 'model'):
|
|
|
logger.info('Model had been initialized.')
|
|
|
return
|
|
|
|
|
|
if cfg_path is None or ckpt_path is None:
|
|
|
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
|
|
|
tag = model_type + '-' + lang + '-' + sample_rate_str
|
|
|
res_path = self._get_pretrained_path(tag) # wenetspeech_zh
|
|
|
self.res_path = res_path
|
|
|
self.cfg_path = os.path.join(
|
|
|
res_path, self.pretrained_models[tag]['cfg_path'])
|
|
|
self.ckpt_path = os.path.join(
|
|
|
res_path,
|
|
|
self.pretrained_models[tag]['ckpt_path'] + ".pdparams")
|
|
|
logger.info(res_path)
|
|
|
|
|
|
else:
|
|
|
self.cfg_path = os.path.abspath(cfg_path)
|
|
|
self.ckpt_path = os.path.abspath(ckpt_path + ".pdparams")
|
|
|
self.res_path = os.path.dirname(
|
|
|
os.path.dirname(os.path.abspath(self.cfg_path)))
|
|
|
logger.info(self.cfg_path)
|
|
|
logger.info(self.ckpt_path)
|
|
|
|
|
|
#Init body.
|
|
|
self.config = CfgNode(new_allowed=True)
|
|
|
self.config.merge_from_file(self.cfg_path)
|
|
|
|
|
|
with UpdateConfig(self.config):
|
|
|
if "deepspeech2online" in model_type or "deepspeech2offline" in model_type:
|
|
|
from paddlespeech.s2t.io.collator import SpeechCollator
|
|
|
self.vocab = self.config.vocab_filepath
|
|
|
self.config.decode.lang_model_path = os.path.join(
|
|
|
MODEL_HOME, 'language_model',
|
|
|
self.config.decode.lang_model_path)
|
|
|
self.collate_fn_test = SpeechCollator.from_config(self.config)
|
|
|
self.text_feature = TextFeaturizer(
|
|
|
unit_type=self.config.unit_type, vocab=self.vocab)
|
|
|
lm_url = self.pretrained_models[tag]['lm_url']
|
|
|
lm_md5 = self.pretrained_models[tag]['lm_md5']
|
|
|
self.download_lm(
|
|
|
lm_url,
|
|
|
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
|
|
|
|
|
|
elif "conformer" in model_type or "transformer" in model_type or "wenetspeech" in model_type:
|
|
|
self.config.spm_model_prefix = os.path.join(
|
|
|
self.res_path, self.config.spm_model_prefix)
|
|
|
self.text_feature = TextFeaturizer(
|
|
|
unit_type=self.config.unit_type,
|
|
|
vocab=self.config.vocab_filepath,
|
|
|
spm_model_prefix=self.config.spm_model_prefix)
|
|
|
self.config.decode.decoding_method = decode_method
|
|
|
else:
|
|
|
raise Exception("wrong type")
|
|
|
model_name = model_type[:model_type.rindex(
|
|
|
'_')] # model_type: {model_name}_{dataset}
|
|
|
model_class = dynamic_import(model_name, self.model_alias)
|
|
|
model_conf = self.config
|
|
|
model = model_class.from_config(model_conf)
|
|
|
self.model = model
|
|
|
self.model.eval()
|
|
|
|
|
|
# load model
|
|
|
model_dict = paddle.load(self.ckpt_path)
|
|
|
self.model.set_state_dict(model_dict)
|
|
|
|
|
|
def preprocess(self, model_type: str, input: Union[str, os.PathLike]):
|
|
|
"""
|
|
|
Input preprocess and return paddle.Tensor stored in self.input.
|
|
|
Input content can be a text(tts), a file(asr, cls) or a streaming(not supported yet).
|
|
|
"""
|
|
|
|
|
|
audio_file = input
|
|
|
if isinstance(audio_file, (str, os.PathLike)):
|
|
|
logger.info("Preprocess audio_file:" + audio_file)
|
|
|
|
|
|
# Get the object for feature extraction
|
|
|
if "deepspeech2online" in model_type or "deepspeech2offline" in model_type:
|
|
|
audio, _ = self.collate_fn_test.process_utterance(
|
|
|
audio_file=audio_file, transcript=" ")
|
|
|
audio_len = audio.shape[0]
|
|
|
audio = paddle.to_tensor(audio, dtype='float32')
|
|
|
audio_len = paddle.to_tensor(audio_len)
|
|
|
audio = paddle.unsqueeze(audio, axis=0)
|
|
|
# vocab_list = collate_fn_test.vocab_list
|
|
|
self._inputs["audio"] = audio
|
|
|
self._inputs["audio_len"] = audio_len
|
|
|
logger.info(f"audio feat shape: {audio.shape}")
|
|
|
|
|
|
elif "conformer" in model_type or "transformer" in model_type or "wenetspeech" in model_type:
|
|
|
logger.info("get the preprocess conf")
|
|
|
preprocess_conf = self.config.preprocess_config
|
|
|
preprocess_args = {"train": False}
|
|
|
preprocessing = Transformation(preprocess_conf)
|
|
|
logger.info("read the audio file")
|
|
|
audio, audio_sample_rate = soundfile.read(
|
|
|
audio_file, dtype="int16", always_2d=True)
|
|
|
|
|
|
if self.change_format:
|
|
|
if audio.shape[1] >= 2:
|
|
|
audio = audio.mean(axis=1, dtype=np.int16)
|
|
|
else:
|
|
|
audio = audio[:, 0]
|
|
|
# pcm16 -> pcm 32
|
|
|
audio = self._pcm16to32(audio)
|
|
|
audio = librosa.resample(
|
|
|
audio,
|
|
|
orig_sr=audio_sample_rate,
|
|
|
target_sr=self.sample_rate)
|
|
|
audio_sample_rate = self.sample_rate
|
|
|
# pcm32 -> pcm 16
|
|
|
audio = self._pcm32to16(audio)
|
|
|
else:
|
|
|
audio = audio[:, 0]
|
|
|
|
|
|
logger.info(f"audio shape: {audio.shape}")
|
|
|
# fbank
|
|
|
audio = preprocessing(audio, **preprocess_args)
|
|
|
|
|
|
audio_len = paddle.to_tensor(audio.shape[0])
|
|
|
audio = paddle.to_tensor(audio, dtype='float32').unsqueeze(axis=0)
|
|
|
|
|
|
self._inputs["audio"] = audio
|
|
|
self._inputs["audio_len"] = audio_len
|
|
|
logger.info(f"audio feat shape: {audio.shape}")
|
|
|
|
|
|
else:
|
|
|
raise Exception("wrong type")
|
|
|
|
|
|
logger.info("audio feat process success")
|
|
|
|
|
|
@paddle.no_grad()
|
|
|
def infer(self, model_type: str):
|
|
|
"""
|
|
|
Model inference and result stored in self.output.
|
|
|
"""
|
|
|
logger.info("start to infer the model to get the output")
|
|
|
cfg = self.config.decode
|
|
|
audio = self._inputs["audio"]
|
|
|
audio_len = self._inputs["audio_len"]
|
|
|
if "deepspeech2online" in model_type or "deepspeech2offline" in model_type:
|
|
|
decode_batch_size = audio.shape[0]
|
|
|
self.model.decoder.init_decoder(
|
|
|
decode_batch_size, self.text_feature.vocab_list,
|
|
|
cfg.decoding_method, cfg.lang_model_path, cfg.alpha, cfg.beta,
|
|
|
cfg.beam_size, cfg.cutoff_prob, cfg.cutoff_top_n,
|
|
|
cfg.num_proc_bsearch)
|
|
|
|
|
|
result_transcripts = self.model.decode(audio, audio_len)
|
|
|
self.model.decoder.del_decoder()
|
|
|
self._outputs["result"] = result_transcripts[0]
|
|
|
|
|
|
elif "conformer" in model_type or "transformer" in model_type:
|
|
|
logger.info(
|
|
|
f"we will use the transformer like model : {model_type}")
|
|
|
try:
|
|
|
result_transcripts = self.model.decode(
|
|
|
audio,
|
|
|
audio_len,
|
|
|
text_feature=self.text_feature,
|
|
|
decoding_method=cfg.decoding_method,
|
|
|
beam_size=cfg.beam_size,
|
|
|
ctc_weight=cfg.ctc_weight,
|
|
|
decoding_chunk_size=cfg.decoding_chunk_size,
|
|
|
num_decoding_left_chunks=cfg.num_decoding_left_chunks,
|
|
|
simulate_streaming=cfg.simulate_streaming)
|
|
|
self._outputs["result"] = result_transcripts[0][0]
|
|
|
except Exception as e:
|
|
|
logger.exception(e)
|
|
|
|
|
|
else:
|
|
|
raise Exception("invalid model name")
|
|
|
|
|
|
def postprocess(self) -> Union[str, os.PathLike]:
|
|
|
"""
|
|
|
Output postprocess and return human-readable results such as texts and audio files.
|
|
|
"""
|
|
|
return self._outputs["result"]
|
|
|
|
|
|
def download_lm(self, url, lm_dir, md5sum):
|
|
|
download_path = get_path_from_url(
|
|
|
url=url,
|
|
|
root_dir=lm_dir,
|
|
|
md5sum=md5sum,
|
|
|
decompress=False, )
|
|
|
|
|
|
def _pcm16to32(self, audio):
|
|
|
assert (audio.dtype == np.int16)
|
|
|
audio = audio.astype("float32")
|
|
|
bits = np.iinfo(np.int16).bits
|
|
|
audio = audio / (2**(bits - 1))
|
|
|
return audio
|
|
|
|
|
|
def _pcm32to16(self, audio):
|
|
|
assert (audio.dtype == np.float32)
|
|
|
bits = np.iinfo(np.int16).bits
|
|
|
audio = audio * (2**(bits - 1))
|
|
|
audio = np.round(audio).astype("int16")
|
|
|
return audio
|
|
|
|
|
|
def _check(self, audio_file: str, sample_rate: int, force_yes: bool):
|
|
|
self.sample_rate = sample_rate
|
|
|
if self.sample_rate != 16000 and self.sample_rate != 8000:
|
|
|
logger.error(
|
|
|
"invalid sample rate, please input --sr 8000 or --sr 16000")
|
|
|
return False
|
|
|
|
|
|
if isinstance(audio_file, (str, os.PathLike)):
|
|
|
if not os.path.isfile(audio_file):
|
|
|
logger.error("Please input the right audio file path")
|
|
|
return False
|
|
|
|
|
|
logger.info("checking the audio file format......")
|
|
|
try:
|
|
|
audio, audio_sample_rate = soundfile.read(
|
|
|
audio_file, dtype="int16", always_2d=True)
|
|
|
audio_duration = audio.shape[0] / audio_sample_rate
|
|
|
max_duration = 50.0
|
|
|
if audio_duration >= max_duration:
|
|
|
logger.error("Please input audio file less then 50 seconds.\n")
|
|
|
return False
|
|
|
except Exception as e:
|
|
|
logger.exception(e)
|
|
|
logger.error(
|
|
|
"can not open the audio file, please check the audio file format is 'wav'. \n \
|
|
|
you can try to use sox to change the file format.\n \
|
|
|
For example: \n \
|
|
|
sample rate: 16k \n \
|
|
|
sox input_audio.xx --rate 16k --bits 16 --channels 1 output_audio.wav \n \
|
|
|
sample rate: 8k \n \
|
|
|
sox input_audio.xx --rate 8k --bits 16 --channels 1 output_audio.wav \n \
|
|
|
")
|
|
|
return False
|
|
|
logger.info("The sample rate is %d" % audio_sample_rate)
|
|
|
if audio_sample_rate != self.sample_rate:
|
|
|
logger.warning("The sample rate of the input file is not {}.\n \
|
|
|
The program will resample the wav file to {}.\n \
|
|
|
If the result does not meet your expectations,\n \
|
|
|
Please input the 16k 16 bit 1 channel wav file. \
|
|
|
".format(self.sample_rate, self.sample_rate))
|
|
|
if force_yes is False:
|
|
|
while (True):
|
|
|
logger.info(
|
|
|
"Whether to change the sample rate and the channel. Y: change the sample. N: exit the prgream."
|
|
|
)
|
|
|
content = input("Input(Y/N):")
|
|
|
if content.strip() == "Y" or content.strip(
|
|
|
) == "y" or content.strip() == "yes" or content.strip(
|
|
|
) == "Yes":
|
|
|
logger.info(
|
|
|
"change the sampele rate, channel to 16k and 1 channel"
|
|
|
)
|
|
|
break
|
|
|
elif content.strip() == "N" or content.strip(
|
|
|
) == "n" or content.strip() == "no" or content.strip(
|
|
|
) == "No":
|
|
|
logger.info("Exit the program")
|
|
|
return False
|
|
|
else:
|
|
|
logger.warning("Not regular input, please input again")
|
|
|
|
|
|
self.change_format = True
|
|
|
else:
|
|
|
logger.info("The audio file format is right")
|
|
|
self.change_format = False
|
|
|
|
|
|
return True
|
|
|
|
|
|
def execute(self, argv: List[str]) -> bool:
|
|
|
"""
|
|
|
Command line entry.
|
|
|
"""
|
|
|
parser_args = self.parser.parse_args(argv)
|
|
|
|
|
|
model = parser_args.model
|
|
|
lang = parser_args.lang
|
|
|
sample_rate = parser_args.sample_rate
|
|
|
config = parser_args.config
|
|
|
ckpt_path = parser_args.ckpt_path
|
|
|
decode_method = parser_args.decode_method
|
|
|
force_yes = parser_args.yes
|
|
|
rtf = parser_args.rtf
|
|
|
device = parser_args.device
|
|
|
|
|
|
if not parser_args.verbose:
|
|
|
self.disable_task_loggers()
|
|
|
|
|
|
task_source = self.get_task_source(parser_args.input)
|
|
|
task_results = OrderedDict()
|
|
|
has_exceptions = False
|
|
|
|
|
|
for id_, input_ in task_source.items():
|
|
|
try:
|
|
|
res = self(input_, model, lang, sample_rate, config, ckpt_path,
|
|
|
decode_method, force_yes, rtf, device)
|
|
|
task_results[id_] = res
|
|
|
except Exception as e:
|
|
|
has_exceptions = True
|
|
|
task_results[id_] = f'{e.__class__.__name__}: {e}'
|
|
|
|
|
|
if rtf:
|
|
|
self.show_rtf(CLI_TIMER[self.__class__.__name__])
|
|
|
|
|
|
self.process_task_results(parser_args.input, task_results,
|
|
|
parser_args.job_dump_result)
|
|
|
|
|
|
if has_exceptions:
|
|
|
return False
|
|
|
else:
|
|
|
return True
|
|
|
|
|
|
@stats_wrapper
|
|
|
def __call__(self,
|
|
|
audio_file: os.PathLike,
|
|
|
model: str='conformer_wenetspeech',
|
|
|
lang: str='zh',
|
|
|
sample_rate: int=16000,
|
|
|
config: os.PathLike=None,
|
|
|
ckpt_path: os.PathLike=None,
|
|
|
decode_method: str='attention_rescoring',
|
|
|
force_yes: bool=False,
|
|
|
rtf: bool=False,
|
|
|
device=paddle.get_device()):
|
|
|
"""
|
|
|
Python API to call an executor.
|
|
|
"""
|
|
|
audio_file = os.path.abspath(audio_file)
|
|
|
if not self._check(audio_file, sample_rate, force_yes):
|
|
|
sys.exit(-1)
|
|
|
paddle.set_device(device)
|
|
|
self._init_from_path(model, lang, sample_rate, config, decode_method,
|
|
|
ckpt_path)
|
|
|
if rtf:
|
|
|
k = self.__class__.__name__
|
|
|
CLI_TIMER[k]['start'].append(time.time())
|
|
|
|
|
|
self.preprocess(model, audio_file)
|
|
|
self.infer(model)
|
|
|
res = self.postprocess() # Retrieve result of asr.
|
|
|
|
|
|
if rtf:
|
|
|
CLI_TIMER[k]['end'].append(time.time())
|
|
|
audio, audio_sample_rate = soundfile.read(
|
|
|
audio_file, dtype="int16", always_2d=True)
|
|
|
CLI_TIMER[k]['extra'].append(audio.shape[0] / audio_sample_rate)
|
|
|
|
|
|
return res
|