You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/third_party/paddle_audio/frontend/kaldi.py

267 lines
7.2 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

from typing import Tuple
import numpy as np
import paddle
from paddle import Tensor
from paddle import nn
from paddle.nn import functional as F
import soundfile as sf
from .common import get_window
from .common import dft_matrix
def read(wavpath:str, sr:int = None, start=0, stop=None, dtype='int16', always_2d=True)->Tuple[int, np.ndarray]:
"""load wav file.
Args:
wavpath (str): wav path.
sr (int, optional): expect sample rate. Defaults to None.
dtype (str, optional): wav data bits. Defaults to 'int16'.
Returns:
Tuple[int, np.ndarray]: sr (int), wav (int16) [T, C].
"""
wav, r_sr = sf.read(wavpath, start=start, stop=stop, dtype=dtype, always_2d=always_2d)
if sr:
assert sr == r_sr
return r_sr, wav
def write(wavpath:str, wav:np.ndarray, sr:int, dtype='PCM_16'):
"""write wav file.
Args:
wavpath (str): file path to save.
wav (np.ndarray): wav data.
sr (int): data samplerate.
dtype (str, optional): wav bit format. Defaults to 'PCM_16'.
"""
sf.write(wavpath, wav, sr, subtype=dtype)
def frames(x: Tensor,
num_samples: Tensor,
sr: int,
win_length: float,
stride_length: float,
clip: bool = False) -> Tuple[Tensor, Tensor]:
"""Extract frames from audio.
Parameters
----------
x : Tensor
Shape (B, T), batched waveform.
num_samples : Tensor
Shape (B, ), number of samples of each waveform.
sr: int
Sampling Rate.
win_length : float
Window length in ms.
stride_length : float
Stride length in ms.
clip : bool, optional
Whether to clip audio that does not fit into the last frame, by
default True
Returns
-------
frames : Tensor
Shape (B, T', win_length).
num_frames : Tensor
Shape (B, ) number of valid frames
"""
assert stride_length <= win_length
stride_length = int(stride_length * sr)
win_length = int(win_length * sr)
num_frames = (num_samples - win_length) // stride_length
padding = (0, 0)
if not clip:
num_frames += 1
need_samples = num_frames * stride_length + win_length
padding = (0, need_samples - num_samples - 1)
weight = paddle.eye(win_length).unsqueeze(1) #[win_length, 1, win_length]
frames = F.conv1d(x.unsqueeze(-1),
weight,
padding=padding,
stride=(stride_length, ),
data_format='NLC')
return frames, num_frames
def dither(signal:Tensor, dither_value=1.0)->Tensor:
"""dither frames for log compute.
Args:
signal (Tensor): [B, T, D]
dither_value (float, optional): [scalar]. Defaults to 1.0.
Returns:
Tensor: [B, T, D]
"""
D = paddle.shape(signal)[-1]
signal += paddle.normal(shape=[1, 1, D]) * dither_value
return signal
def remove_dc_offset(signal:Tensor)->Tensor:
"""remove dc.
Args:
signal (Tensor): [B, T, D]
Returns:
Tensor: [B, T, D]
"""
signal -= paddle.mean(signal, axis=-1, keepdim=True)
return signal
def preemphasis(signal:Tensor, coeff=0.97)->Tensor:
"""perform preemphasis on the input signal.
Args:
signal (Tensor): [B, T, D], The signal to filter.
coeff (float, optional): [scalar].The preemphasis coefficient. 0 is no filter, Defaults to 0.97.
Returns:
Tensor: [B, T, D]
"""
return paddle.concat([
(1-coeff)*signal[:, :, 0:1],
signal[:, :, 1:] - coeff * signal[:, :, :-1]
], axis=-1)
class STFT(nn.Layer):
"""A module for computing stft transformation in a differentiable way.
http://practicalcryptography.com/miscellaneous/machine-learning/intuitive-guide-discrete-fourier-transform/
Parameters
------------
n_fft : int
Number of samples in a frame.
sr: int
Number of Samplilng rate.
stride_length : float
Number of samples shifted between adjacent frames.
win_length : float
Length of the window.
clip: bool
Whether to clip audio is necesaary.
"""
def __init__(self,
n_fft: int,
sr: int,
win_length: float,
stride_length: float,
dither:float=0.0,
preemph_coeff:float=0.97,
remove_dc_offset:bool=True,
window_type: str = 'povey',
clip: bool = False):
super().__init__()
self.sr = sr
self.win_length = win_length
self.stride_length = stride_length
self.dither = dither
self.preemph_coeff = preemph_coeff
self.remove_dc_offset = remove_dc_offset
self.window_type = window_type
self.clip = clip
self.n_fft = n_fft
self.n_bin = 1 + n_fft // 2
w_real, w_imag, kernel_size = dft_matrix(
self.n_fft, int(self.win_length * self.sr), self.n_bin
)
# calculate window
window = get_window(window_type, kernel_size)
# (2 * n_bins, kernel_size)
w = np.concatenate([w_real, w_imag], axis=0)
w = w * window
# (kernel_size, 2 * n_bins)
w = np.transpose(w)
weight = paddle.cast(paddle.to_tensor(w), paddle.get_default_dtype())
self.register_buffer("weight", weight)
def forward(self, x: Tensor, num_samples: Tensor) -> Tuple[Tensor, Tensor]:
"""Compute the stft transform.
Parameters
------------
x : Tensor [shape=(B, T)]
The input waveform.
num_samples : Tensor [shape=(B,)]
Number of samples of each waveform.
Returns
------------
C : Tensor
Shape(B, T', n_bins, 2) Spectrogram.
num_frames: Tensor
Shape (B,) number of samples of each spectrogram
"""
batch_size = paddle.shape(num_samples)
F, nframe = frames(x, num_samples, self.sr, self.win_length, self.stride_length, clip=self.clip)
if self.dither:
F = dither(F, self.dither)
if self.remove_dc_offset:
F = remove_dc_offset(F)
if self.preemph_coeff:
F = preemphasis(F)
C = paddle.matmul(F, self.weight) # [B, T, K] [K, 2 * n_bins]
C = paddle.reshape(C, [batch_size, -1, 2, self.n_bin])
C = C.transpose([0, 1, 3, 2])
return C, nframe
def powspec(C:Tensor) -> Tensor:
"""Compute the power spectrum |X_k|^2.
Args:
C (Tensor): [B, T, C, 2]
Returns:
Tensor: [B, T, C]
"""
real, imag = paddle.chunk(C, 2, axis=-1)
return paddle.square(real.squeeze(-1)) + paddle.square(imag.squeeze(-1))
def magspec(C: Tensor, eps=1e-10) -> Tensor:
"""Compute the magnitude spectrum |X_k|.
Args:
C (Tensor): [B, T, C, 2]
eps (float): epsilon.
Returns:
Tensor: [B, T, C]
"""
pspec = powspec(C)
return paddle.sqrt(pspec + eps)
def logspec(C: Tensor, eps=1e-10) -> Tensor:
"""Compute log-spectrum 20log10X_k.
Args:
C (Tensor): [description]
eps ([type], optional): [description]. Defaults to 1e-10.
Returns:
Tensor: [description]
"""
spec = magspec(C)
return 20 * paddle.log10(spec + eps)