You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
249 lines
8.7 KiB
249 lines
8.7 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
import os
|
|
from collections import OrderedDict
|
|
from typing import List
|
|
from typing import Optional
|
|
from typing import Union
|
|
|
|
import numpy as np
|
|
import paddle
|
|
import yaml
|
|
|
|
from ..executor import BaseExecutor
|
|
from ..log import logger
|
|
from ..utils import cli_register
|
|
from ..utils import stats_wrapper
|
|
from .pretrained_models import model_alias
|
|
from .pretrained_models import pretrained_models
|
|
from paddleaudio import load
|
|
from paddleaudio.features import LogMelSpectrogram
|
|
from paddlespeech.s2t.utils.dynamic_import import dynamic_import
|
|
|
|
__all__ = ['CLSExecutor']
|
|
|
|
|
|
@cli_register(
|
|
name='paddlespeech.cls', description='Audio classification infer command.')
|
|
class CLSExecutor(BaseExecutor):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.model_alias = model_alias
|
|
self.pretrained_models = pretrained_models
|
|
|
|
self.parser = argparse.ArgumentParser(
|
|
prog='paddlespeech.cls', add_help=True)
|
|
self.parser.add_argument(
|
|
'--input', type=str, default=None, help='Audio file to classify.')
|
|
self.parser.add_argument(
|
|
'--model',
|
|
type=str,
|
|
default='panns_cnn14',
|
|
choices=[
|
|
tag[:tag.index('-')] for tag in self.pretrained_models.keys()
|
|
],
|
|
help='Choose model type of cls task.')
|
|
self.parser.add_argument(
|
|
'--config',
|
|
type=str,
|
|
default=None,
|
|
help='Config of cls task. Use deault config when it is None.')
|
|
self.parser.add_argument(
|
|
'--ckpt_path',
|
|
type=str,
|
|
default=None,
|
|
help='Checkpoint file of model.')
|
|
self.parser.add_argument(
|
|
'--label_file',
|
|
type=str,
|
|
default=None,
|
|
help='Label file of cls task.')
|
|
self.parser.add_argument(
|
|
'--topk',
|
|
type=int,
|
|
default=1,
|
|
help='Return topk scores of classification result.')
|
|
self.parser.add_argument(
|
|
'--device',
|
|
type=str,
|
|
default=paddle.get_device(),
|
|
help='Choose device to execute model inference.')
|
|
self.parser.add_argument(
|
|
'-d',
|
|
'--job_dump_result',
|
|
action='store_true',
|
|
help='Save job result into file.')
|
|
self.parser.add_argument(
|
|
'-v',
|
|
'--verbose',
|
|
action='store_true',
|
|
help='Increase logger verbosity of current task.')
|
|
|
|
def _init_from_path(self,
|
|
model_type: str='panns_cnn14',
|
|
cfg_path: Optional[os.PathLike]=None,
|
|
ckpt_path: Optional[os.PathLike]=None,
|
|
label_file: Optional[os.PathLike]=None):
|
|
"""
|
|
Init model and other resources from a specific path.
|
|
"""
|
|
if hasattr(self, 'model'):
|
|
logger.info('Model had been initialized.')
|
|
return
|
|
|
|
if label_file is None or ckpt_path is None:
|
|
tag = model_type + '-' + '32k' # panns_cnn14-32k
|
|
self.res_path = self._get_pretrained_path(tag)
|
|
self.cfg_path = os.path.join(
|
|
self.res_path, self.pretrained_models[tag]['cfg_path'])
|
|
self.label_file = os.path.join(
|
|
self.res_path, self.pretrained_models[tag]['label_file'])
|
|
self.ckpt_path = os.path.join(
|
|
self.res_path, self.pretrained_models[tag]['ckpt_path'])
|
|
else:
|
|
self.cfg_path = os.path.abspath(cfg_path)
|
|
self.label_file = os.path.abspath(label_file)
|
|
self.ckpt_path = os.path.abspath(ckpt_path)
|
|
|
|
# config
|
|
with open(self.cfg_path, 'r') as f:
|
|
self._conf = yaml.safe_load(f)
|
|
|
|
# labels
|
|
self._label_list = []
|
|
with open(self.label_file, 'r') as f:
|
|
for line in f:
|
|
self._label_list.append(line.strip())
|
|
|
|
# model
|
|
model_class = dynamic_import(model_type, self.model_alias)
|
|
model_dict = paddle.load(self.ckpt_path)
|
|
self.model = model_class(extract_embedding=False)
|
|
self.model.set_state_dict(model_dict)
|
|
self.model.eval()
|
|
|
|
def preprocess(self, audio_file: Union[str, os.PathLike]):
|
|
"""
|
|
Input preprocess and return paddle.Tensor stored in self.input.
|
|
Input content can be a text(tts), a file(asr, cls) or a streaming(not supported yet).
|
|
"""
|
|
feat_conf = self._conf['feature']
|
|
logger.info(feat_conf)
|
|
waveform, _ = load(
|
|
file=audio_file,
|
|
sr=feat_conf['sample_rate'],
|
|
mono=True,
|
|
dtype='float32')
|
|
if isinstance(audio_file, (str, os.PathLike)):
|
|
logger.info("Preprocessing audio_file:" + audio_file)
|
|
|
|
# Feature extraction
|
|
feature_extractor = LogMelSpectrogram(
|
|
sr=feat_conf['sample_rate'],
|
|
n_fft=feat_conf['n_fft'],
|
|
hop_length=feat_conf['hop_length'],
|
|
window=feat_conf['window'],
|
|
win_length=feat_conf['window_length'],
|
|
f_min=feat_conf['f_min'],
|
|
f_max=feat_conf['f_max'],
|
|
n_mels=feat_conf['n_mels'], )
|
|
feats = feature_extractor(
|
|
paddle.to_tensor(paddle.to_tensor(waveform).unsqueeze(0)))
|
|
self._inputs['feats'] = paddle.transpose(feats, [0, 2, 1]).unsqueeze(
|
|
1) # [B, N, T] -> [B, 1, T, N]
|
|
|
|
@paddle.no_grad()
|
|
def infer(self):
|
|
"""
|
|
Model inference and result stored in self.output.
|
|
"""
|
|
self._outputs['logits'] = self.model(self._inputs['feats'])
|
|
|
|
def _generate_topk_label(self, result: np.ndarray, topk: int) -> str:
|
|
assert topk <= len(
|
|
self._label_list), 'Value of topk is larger than number of labels.'
|
|
|
|
topk_idx = (-result).argsort()[:topk]
|
|
ret = ''
|
|
for idx in topk_idx:
|
|
label, score = self._label_list[idx], result[idx]
|
|
ret += f'{label} {score} '
|
|
return ret
|
|
|
|
def postprocess(self, topk: int) -> Union[str, os.PathLike]:
|
|
"""
|
|
Output postprocess and return human-readable results such as texts and audio files.
|
|
"""
|
|
return self._generate_topk_label(
|
|
result=self._outputs['logits'].squeeze(0).numpy(), topk=topk)
|
|
|
|
def execute(self, argv: List[str]) -> bool:
|
|
"""
|
|
Command line entry.
|
|
"""
|
|
parser_args = self.parser.parse_args(argv)
|
|
|
|
model_type = parser_args.model
|
|
label_file = parser_args.label_file
|
|
cfg_path = parser_args.config
|
|
ckpt_path = parser_args.ckpt_path
|
|
topk = parser_args.topk
|
|
device = parser_args.device
|
|
|
|
if not parser_args.verbose:
|
|
self.disable_task_loggers()
|
|
|
|
task_source = self.get_task_source(parser_args.input)
|
|
task_results = OrderedDict()
|
|
has_exceptions = False
|
|
|
|
for id_, input_ in task_source.items():
|
|
try:
|
|
res = self(input_, model_type, cfg_path, ckpt_path, label_file,
|
|
topk, device)
|
|
task_results[id_] = res
|
|
except Exception as e:
|
|
has_exceptions = True
|
|
task_results[id_] = f'{e.__class__.__name__}: {e}'
|
|
|
|
self.process_task_results(parser_args.input, task_results,
|
|
parser_args.job_dump_result)
|
|
|
|
if has_exceptions:
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
@stats_wrapper
|
|
def __call__(self,
|
|
audio_file: os.PathLike,
|
|
model: str='panns_cnn14',
|
|
config: Optional[os.PathLike]=None,
|
|
ckpt_path: Optional[os.PathLike]=None,
|
|
label_file: Optional[os.PathLike]=None,
|
|
topk: int=1,
|
|
device: str=paddle.get_device()):
|
|
"""
|
|
Python API to call an executor.
|
|
"""
|
|
audio_file = os.path.abspath(os.path.expanduser(audio_file))
|
|
paddle.set_device(device)
|
|
self._init_from_path(model, config, ckpt_path, label_file)
|
|
self.preprocess(audio_file)
|
|
self.infer()
|
|
res = self.postprocess(topk) # Retrieve result of cls.
|
|
|
|
return res
|