You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
PaddleSpeech/runtime/engine/asr/recognizer/recognizer_controller_impl.cc

258 lines
8.9 KiB

// Copyright (c) 2020 Mobvoi Inc (Binbin Zhang, Di Wu)
// 2022 Binbin Zhang (binbzha@qq.com)
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "recognizer/recognizer_controller_impl.h"
#include "decoder/ctc_prefix_beam_search_decoder.h"
#include "common/utils/strings.h"
namespace ppspeech {
RecognizerControllerImpl::RecognizerControllerImpl(const RecognizerResource& resource)
: opts_(resource) {
BaseFloat am_scale = resource.acoustic_scale;
BaseFloat blank_threshold = resource.blank_threshold;
const FeaturePipelineOptions& feature_opts = resource.feature_pipeline_opts;
std::shared_ptr<FeaturePipeline> feature_pipeline(
new FeaturePipeline(feature_opts));
std::shared_ptr<NnetBase> nnet;
#ifndef USE_ONNX
nnet = resource.nnet->Clone();
#else
if (resource.model_opts.with_onnx_model){
nnet.reset(new U2OnnxNnet(resource.model_opts));
} else {
nnet = resource.nnet->Clone();
}
#endif
nnet_producer_.reset(new NnetProducer(nnet, feature_pipeline, blank_threshold));
nnet_thread_ = std::thread(RunNnetEvaluation, this);
decodable_.reset(new Decodable(nnet_producer_, am_scale));
if (resource.decoder_opts.tlg_decoder_opts.fst_path.empty()) {
LOG(INFO) << "Init PrefixBeamSearch Decoder";
decoder_ = std::make_unique<CTCPrefixBeamSearch>(
resource.decoder_opts.ctc_prefix_search_opts);
} else {
LOG(INFO) << "Init TLGDecoder";
decoder_ = std::make_unique<TLGDecoder>(
resource.decoder_opts.tlg_decoder_opts);
}
symbol_table_ = decoder_->WordSymbolTable();
global_frame_offset_ = 0;
input_finished_ = false;
num_frames_ = 0;
result_.clear();
}
RecognizerControllerImpl::~RecognizerControllerImpl() {
WaitFinished();
}
void RecognizerControllerImpl::Reset() {
nnet_producer_->Reset();
}
void RecognizerControllerImpl::RunDecoder(RecognizerControllerImpl* me) {
me->RunDecoderInternal();
}
void RecognizerControllerImpl::RunDecoderInternal() {
LOG(INFO) << "DecoderInternal begin";
while (!nnet_producer_->IsFinished()) {
nnet_condition_.notify_one();
decoder_->AdvanceDecode(decodable_);
}
decoder_->AdvanceDecode(decodable_);
UpdateResult(false);
LOG(INFO) << "DecoderInternal exit";
}
void RecognizerControllerImpl::WaitDecoderFinished() {
if (decoder_thread_.joinable()) decoder_thread_.join();
}
void RecognizerControllerImpl::RunNnetEvaluation(RecognizerControllerImpl* me) {
me->RunNnetEvaluationInternal();
}
void RecognizerControllerImpl::SetInputFinished() {
nnet_producer_->SetInputFinished();
nnet_condition_.notify_one();
LOG(INFO) << "Set Input Finished";
}
void RecognizerControllerImpl::WaitFinished() {
abort_ = true;
LOG(INFO) << "nnet wait finished";
nnet_condition_.notify_one();
if (nnet_thread_.joinable()) {
nnet_thread_.join();
}
}
void RecognizerControllerImpl::RunNnetEvaluationInternal() {
bool result = false;
LOG(INFO) << "NnetEvaluationInteral begin";
while (!abort_) {
std::unique_lock<std::mutex> lock(nnet_mutex_);
nnet_condition_.wait(lock);
do {
result = nnet_producer_->Compute();
decoder_condition_.notify_one();
} while (result);
}
LOG(INFO) << "NnetEvaluationInteral exit";
}
void RecognizerControllerImpl::Accept(std::vector<float> data) {
nnet_producer_->Accept(data);
nnet_condition_.notify_one();
}
void RecognizerControllerImpl::InitDecoder() {
global_frame_offset_ = 0;
input_finished_ = false;
num_frames_ = 0;
result_.clear();
decodable_->Reset();
decoder_->Reset();
decoder_thread_ = std::thread(RunDecoder, this);
}
void RecognizerControllerImpl::AttentionRescoring() {
decoder_->FinalizeSearch();
UpdateResult(false);
// No need to do rescoring
if (0.0 == opts_.decoder_opts.rescoring_weight) {
LOG_EVERY_N(WARNING, 3) << "Not do AttentionRescoring!";
return;
}
LOG_EVERY_N(WARNING, 3) << "Do AttentionRescoring!";
// Inputs() returns N-best input ids, which is the basic unit for rescoring
// In CtcPrefixBeamSearch, inputs are the same to outputs
const auto& hypotheses = decoder_->Inputs();
int num_hyps = hypotheses.size();
if (num_hyps <= 0) {
return;
}
std::vector<float> rescoring_score;
decodable_->AttentionRescoring(
hypotheses, opts_.decoder_opts.reverse_weight, &rescoring_score);
// combine ctc score and rescoring score
for (size_t i = 0; i < num_hyps; i++) {
VLOG(3) << "hyp " << i << " rescoring_score: " << rescoring_score[i]
<< " ctc_score: " << result_[i].score
<< " rescoring_weight: " << opts_.decoder_opts.rescoring_weight
<< " ctc_weight: " << opts_.decoder_opts.ctc_weight;
result_[i].score =
opts_.decoder_opts.rescoring_weight * rescoring_score[i] +
opts_.decoder_opts.ctc_weight * result_[i].score;
VLOG(3) << "hyp: " << result_[0].sentence
<< " score: " << result_[0].score;
}
std::sort(result_.begin(), result_.end(), DecodeResult::CompareFunc);
VLOG(3) << "result: " << result_[0].sentence
<< " score: " << result_[0].score;
}
std::string RecognizerControllerImpl::GetFinalResult() { return result_[0].sentence; }
std::string RecognizerControllerImpl::GetPartialResult() { return result_[0].sentence; }
void RecognizerControllerImpl::UpdateResult(bool finish) {
const auto& hypotheses = decoder_->Outputs();
const auto& inputs = decoder_->Inputs();
const auto& likelihood = decoder_->Likelihood();
const auto& times = decoder_->Times();
result_.clear();
CHECK_EQ(inputs.size(), likelihood.size());
for (size_t i = 0; i < hypotheses.size(); i++) {
const std::vector<int>& hypothesis = hypotheses[i];
DecodeResult path;
path.score = likelihood[i];
for (size_t j = 0; j < hypothesis.size(); j++) {
std::string word = symbol_table_->Find(hypothesis[j]);
path.sentence += (" " + word);
}
path.sentence = DelBlank(path.sentence);
// TimeStamp is only supported in final result
// TimeStamp of the output of CtcWfstBeamSearch may be inaccurate due to
// various FST operations when building the decoding graph. So here we
// use time stamp of the input(e2e model unit), which is more accurate,
// and it requires the symbol table of the e2e model used in training.
if (symbol_table_ != nullptr && finish) {
int offset = global_frame_offset_ * FrameShiftInMs();
const std::vector<int>& input = inputs[i];
const std::vector<int> time_stamp = times[i];
CHECK_EQ(input.size(), time_stamp.size());
for (size_t j = 0; j < input.size(); j++) {
std::string word = symbol_table_->Find(input[j]);
int start =
time_stamp[j] * FrameShiftInMs() - time_stamp_gap_ > 0
? time_stamp[j] * FrameShiftInMs() - time_stamp_gap_
: 0;
if (j > 0) {
start =
(time_stamp[j] - time_stamp[j - 1]) * FrameShiftInMs() <
time_stamp_gap_
? (time_stamp[j - 1] + time_stamp[j]) / 2 *
FrameShiftInMs()
: start;
}
int end = time_stamp[j] * FrameShiftInMs();
if (j < input.size() - 1) {
end =
(time_stamp[j + 1] - time_stamp[j]) * FrameShiftInMs() <
time_stamp_gap_
? (time_stamp[j + 1] + time_stamp[j]) / 2 *
FrameShiftInMs()
: end;
}
WordPiece word_piece(word, offset + start, offset + end);
path.word_pieces.emplace_back(word_piece);
}
}
// if (post_processor_ != nullptr) {
// path.sentence = post_processor_->Process(path.sentence, finish);
// }
result_.emplace_back(path);
}
if (DecodedSomething()) {
VLOG(1) << "Partial CTC result " << result_[0].sentence;
}
}
} // namespace ppspeech